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ABSTRACT
In a previous work [1], we have shown that model interpola-
tion can be applied for acoustic model adaptation for a spe-
cific show. Compared to other approaches, this method has
the advantage to be highly flexible, allowing rapid adapta-
tion by simply reassigning the interpolation coefficients. In
this work this approach is used for a multi-accented English
broadcast news data recognition, which can be considered an
arduous task due to the impact of accent variability on the
recognition performance. The work described in [1] is ex-
tended in two ways. First, in order to reduce the parameters
of the interpolated model, a theoretically motivated EM-like
mixture reduction algorithm is proposed. Second, beyond su-
pervised adaptation, model interpolation is used as an unsu-
pervised adaptation framework, where the interpolation coef-
ficients are estimated on-the-fly for each test segment.

Index Terms— Model interpolation, supervised and un-
supervised adaptation, multi-accented data.

1. INTRODUCTION

It is well-known that speech variability is an important diffi-
culty in automatic speech recognition, directly affecting the
quality and challenging the robustness of the recognition sys-
tems. Many sources of variability exist, such as gender, ac-
cent, age, speaking style and rate of speech [2]. According
to [3], accent is, behind gender, the second principal source of
speech variability. Even if substantial progress has been made
in the techniques for normalization and speaker adaptation to
compensate some of the variability, recognition accuracy has
been shown to strongly degrade when the accent of the test
speaker is not well represented in the training data [4–6].

A general approach to deal with accented data is to adapt
a prior model to the target accent [5]. This approach can be
extended to the multi-accented data case [6,7]. The main prin-
ciple is to build different accent-dependent models and use a
selector for adaptation. This procedure was adopted by [8]
to recognize multiple accented English data. In that work,
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accent-specific models were created for 6 different geograph-
ical regions where English is spoken as an official language.
Similar to [9], a Gaussian mixture model (GMM) based clas-
sifier was used to select an accent-dependent model for each
test segment. On average, a significant improvement was ob-
tained over the accent-independent system, although the ac-
curacy of one of the accents (Middle-East 1) degraded.

This paper revisits the problem addressed in [8]. How-
ever, instead of using the approach based on maximum a pos-
teriori (MAP) adaptation [10], here we propose to build the
accent-dependent models by interpolation, with coefficients
automatically estimated [1] via an expectation-maximization
(EM) algorithm [11]. Model interpolation has been already
applied for non-native speech recognition tasks [5, 12], but
with manually selected coefficients.

Model interpolation is performed by merging the GMMs
of the component models and properly adjusting the mixture
coefficients. As a consequence, the number of parameters
of the model increases according to the number of compo-
nent models used, which also increases decoding time. To
recover the same computational complexity, a GMM reduc-
tion algorithm is required. As described in [13], the mixture
reduction issue is usually defined as an optimization problem
where the objective function is an arbitrary similarity measure
between the original and the reduced models. However, we
propose here a different theoretical point of view that fits into
the EM framework and leads to a soft-clustering algorithm.
In that sense, this algorithm has something in common with
the (hard-) clustering algorithm proposed by [14]. Like the
latter, we also initialize the reduced mixtures with a greedy
algorithm [15]. Nevertheless, we do not perform the last opti-
mization step, since it degraded the recognition performances.

In this work, interpolation was assessed in two ways.
First, the accent-dependent models are built via interpolation
during the training phase. Then, during decoding, a model
selection is applied. Second, the component models are in-
terpolated on-the-fly, with coefficients estimated for each test
segment. Therefore, instead of making a hard decision for an
accent, a smoothed combination is performed.

1In [8], the labels for the ME and NA accents were mistakenly swapped.



The remainder of this paper is organized as follows.
Section 2 describes the interpolated model, while Section 3
presents the proposed GMM reduction algorithm. In Sec-
tion 4, the corpus and the baseline system are described.
Section 5 describes the experiments performed with the inter-
polated models. Conclusions are given in Section 6.

2. GAUSSIAN MIXTURE MODEL INTERPOLATION

Linear interpolation is perhaps one of the most straightfor-
ward manner to combine models. In this work, the GMMs of
different component acoustic models are interpolated. To do
so, it is considered that the component models have the same
structure and have been independently estimated.

Let us denote the GMM parameters of the component
models by {λ(l)k }l=1...L

k=1...K , where the indices refer to the l-th
state of the k-th component model. Thus, it is assumed that
we dispose of K component models with L states each. The
likelihood of a sample xt, observed at time t, given the inter-
polated model of state s can be represented by:

f(xt|λ(s)) =
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α
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where N (·|µ,Σ) is a normal density function with mean
vector µ and covariance matrix Σ, and M is the number
of mixture components in the model. By inspection of (1)
and (2), it follows that the interpolated model λ(s) is also
a GMM, with

∑
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The main advantage of such a method is that the model
can be easily adapted to a new task, show or speaker through
simple reassignment of the interpolation coefficients. More-
over, these coefficients can be manually set or automatically
estimated via an EM algorithm, which maximizes the likeli-
hood on some held-out data [1]. Alternatively, the coefficients
can be estimated during decoding, from the test data itself. In
this latter case, the model interpolation can be seen as an un-
supervised adaptation method.

The method has something in common with the cluster
adaptive training [16] and eigenvoices [17], which have been
demonstrated to belong to the same family of adaptive train-
ing methods [18]. These methods attempt to model the acous-
tic variation with respect to the available training subsets, by
performing a joint parameter estimation. Thus, any speaker is

constrained to be represented by a combination of these sub-
sets. However, in the case of model interpolation, the mod-
els are estimated independently. Furthermore, any existent
model judged to be relevant for a task can be considered for
interpolation. This aspect makes interpolation a more flexible
approach to be used on adaptation. Moreover, as performed in
this work, model interpolation can be used on top of speaker
adaptive training [19], also an adaptive training method.

3. GAUSSIAN MIXTURE REDUCTION

As mentioned before, the number of parameters in the in-
terpolated model increases proportionally to the number of
used component models, what may also affect the decoding
time. In order to reduce system complexity, a GMM reduc-
tion algorithm is required. The algorithm proposed here is
theoretically motivated from the maximum likelihood estima-
tion (MLE) on the training data.

Let us consider two multivariate GMMs, one with M
components and parameters λ̄, and its reduced version with
N components (N < M ) and parameters λ:

λ̄ =
(
ω̄1 . . . ω̄M , µ̄1 . . . µ̄M , Σ̄1 . . . Σ̄M

)
(3)

λ = (ω1 . . . ωN , µ1 . . . µN ,Σ1 . . .ΣN ) (4)

where ω̄i, µ̄i and Σ̄i denote, respectively, the mixture coeffi-
cient, the mean vector and the covariance matrix for the i-th
Gaussian component of the model λ̄, and ωj , µj and Σj de-
note the same parameters for the j-th component of λ.

Let us consider the MLE of the model λ, but with the ad-
ditional constraint that each observation vector xt is restricted
to a cluster φ̄i. In this manner, the vectors do not contribute
independently to the estimation of the reduced model, but in-
directly via the clusters themselves. Doing so, it can be shown
that the so-called auxiliary function becomes:

Q(λ, λ̂) =

M∑
i=1

N∑
j=1

n̄i · γij · log
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(5)

where n̄i is the number of vectors associated to the cluster φ̄i
and
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Now, considering that the cluster φ̄i has a normal distri-
bution defined by the parameters of the original model, that is
φ̄i ∼ N (·|µ̄i, Σ̄i), we can define the likelihood f

(
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∣∣µj ,Σj

)
using the following conditional expectation:
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where tr(·) denotes the trace of a matrix.



Set US AU GB ME NA IN
training (hours) 316 33 55.4 27.7 8.2 9.4
train6h (hours) 6 6 6 6 6 6
held-out (hours) 3.6 2.0 2.0 1.6 2.2 1.7
test (min) 172 19 45 15 15 15

Table 1. Duration information of the multi-accented English
corpus used here. train6h and held-out are subsets of training.
Accents: United States (US), Australia (AU), Great Britain
(GB), Middle East (ME), North Africa (NA), India (IN).

Normalizing the auxiliary function by the number of train-
ing samples, we can substitute n̄i by ω̄i in (5) without any
other changes. Finally, the parameter update equations can
be obtained by partially deriving the auxiliary function with
respect to the model parameters and setting them to zero:

ω̂j =
M∑
i=1

ω̄iγij (8)
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> + Σ̄i

)
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These equations are similar to those used in [14], except
for the term γij , which allows each cluster φ̄i to be associated
to different Gaussians λj with a certain probability. In this
sense, this algorithm can be seen as a soft-clustering method,
and, by construction, as a constrained or smoothed MLE.

Different methods for initialization have been tried (sin-
gle Gaussian, highest coefficient components, random), but
better results have been achieved by initializing the reduced
mixtures with the Runnall’s algorithm [15].

4. DATA AND SYSTEM OVERVIEW

The data and baseline system used in this work are the same
as presented in [8]. They are briefly described in this section.

4.1. Corpus

Table 1 shows the duration of training and test sets of the
broadcast news English corpus used in this work, containing
6 different accents. The true accent label for each speaker
is unknown. Here, the geographical region from where the
show was broadcast is considered as the accent label for all
the speakers in the audio file. The train6h and held-out sets
are non-overlapping randomly selected subsets of the train-
ing data. They were used to estimate the interpolation co-
efficients for each accent. The size of the test subsets was
selected based on the distribution of data available for train-
ing. The audio comes from a variety of news sources, mostly
collected via satellite with some downloaded from the Web.

4.2. System overview

The broadcast speech recognition system used in this work
is quite similar to other systems developed at LIMSI [20].
It uses a 42 dimensional PLP-likeacoustic feature vector, in-
cluding 12 cepstrum coefficients, log energy and pitch, along
with their first and second derivatives.

The phone set contains 35 phones, as well as special units
for silence, breath and hesitation markers. Silence is modeled
by a GMM with 1024 components. The other units are mod-
eled by context-dependent triphone hidden Markov models,
where each state observation is modeled by a GMM with 32
components. The models cover about 18k phone contexts and
contain 11.5k tied states. They are gender dependent, speaker
adapted [19], and were obtained via maximum mutual infor-
mation estimation (MMIE) [21].

The language models (LMs) were trained on about 1.2
billion words of texts coming from various sources, including
news and transcriptions. They use a 65k-word vocabulary list
and were built by interpolation of LM components estimated
on different subsets of the training data.

Decoding is performed using unsupervised maximum
likelihood linear regression (MLLR) and constrained MLLR
for speaker adaptation [22]. A word lattice is generated in
a first step, followed by a LM rescoring procedure and a
consensus decoding [23].

The baseline models are described in [8] and have been
generated as follows. First, an accent-independent gender-
independent model was created. Gender-specific and accent-
specific models were obtained using a joint MAP adaptation,
followed by one iteration of MMIE. During decoding, the
most likely accent-dependent model is selected based on a
GMM classifier for each test segment. For the case where the
decision has been performed at the show level, a 100% clas-
sification accuracy rate has been obtained. The main results
obtained by [8] are represented in the first part of Table 2. On
average, the multi-accent system (with per show accent-ID)
performs better than the accent-independent system. How-
ever, the performance for the ME accent deteriorates.

5. EXPERIMENTS

In this work, we restrain our analysis to acoustic modeling,
assuming that the remaining system components (pronuncia-
tion dictionary, language models) provide a reasonable cov-
erage of all the accents represented in the data set. However,
it is known and expected that better recognition performances
can be obtained by adapting the overall system.

For the remaining experiments, the accent-dependent
models built for the baseline system were used as the compo-
nent models for interpolation.



Method US AU GB ME NA IN Sum Ave
Accent independent 14.34 11.92 12.84 15.90 26.47 39.28 16.07 20.12
Show-accent-ID 13.95 11.91 11.98 16.46 25.19 34.28 15.39 18.96
Interpolated 13.83 11.55 11.08 15.79 24.29 33.52 15.05 18.34
Interpolated + reduced 13.75 11.87 11.45 15.79 24.89 33.95 15.11 18.62
Speaker-interpolation 14.11 11.37 11.65 15.63 24.24 33.18 15.27 18.36
Show-interpolation 14.06 11.18 11.30 15.86 24.24 33.69 15.22 18.39

Table 2. WER(%) results using different recognition systems for each of the 6 regional accents. ‘Sum’ corresponds to the WER
on the whole test set, while ‘Ave’ to the average WER when each subset is weighted equally. The first part shows results for the
baseline models; the second and third parts, for models interpolated, either during the training (2nd), or decoding (3rd) phase.

5.1. Supervised adaptation via model interpolation

Model interpolation was assessed in a supervised adapta-
tion scheme. First, the train6h subset was used to estimate
context-independent models for each accent. Interpolation
coefficients were estimated in order to maximize the like-
lihood on the respective held-out data. With the estimated
coefficients, the component models were interpolated, gener-
ating accent-specific models. These interpolated models had
their GMMs reduced to 32 components. During decoding, a
GMM classifier was used to select the accent-specific inter-
polated model for each show. The results obtained with this
approach are shown in the second part of Table 2.

On average, the interpolated models led to the best word
recognition performances on the test data. With respect
to the two baseline systems (Show-accent-ID and Accent-
independent), relative improvements of 2% and 6%, respec-
tively, have been achieved. The use of the GMM reduction
algorithm led to a slight loss of performance. However, in
both cases, the interpolated models led to better recognition
performances for all of the 6 test accents. In particular, and
contrary to the Show-accent-ID system, the performance on
the ME data do not degrade when compared to the accent-
independent system. The improvements obtained with the
interpolated models are significant with respect to both base-
line systems, according to the NIST matched pair sentence-
segment word error significance test [24].

5.2. Unsupervised adaptation via model interpolation

To assess model interpolation as an unsupervised adaptation
technique, the following procedure was performed. During
decoding, instead of selecting one accent, interpolation coef-
ficients are estimated on-the-fly by maximizing the likelihood
of the test data itself. With these coefficients, a segment-
specific model is created by interpolation of the component
models. In this case, no GMM reduction is applied. Speaker
or show-specific interpolated models were created. The re-
sults are shown in the third part of Table 2.

At a first glance, this approach leads to similar average
performances compared to the Show-accent-ID system. How-
ever, the performance is worse for the US accent and bet-
ter for all the other accents. This may be explained by the

System test train6h (as a test)
Accent-independent 18.77 17.22
Adapted to held-out 19.15 17.39
Interpolated 17.25 15.86
Interpolated + reduced 17.45 16.33
Speaker-interpolation 17.09 15.71

Table 3. WER(%) results on the ME test and train6h sets for
the case where no ME data has been considered available for
acoustic model training. No MMIE was performed.

fact that the US accent is better represented in the training
data. Thus, the unsupervised decision leads to a loss of per-
formance. With this prior knowledge, it would be possible to
build a hybrid system, that performs hard (selection) or soft
(interpolation) decisions based on the accent representative-
ness on the training data. Alternatively, only some of the com-
ponent models could be chosen for interpolation, based on a
threshold decision applied to the interpolation coefficients.

5.3. Leaving target accent out

Another set of experiments was performed to assess the case
where the target accent data is not represented in the train-
ing corpus. Deliberately, the ME accent was chosen. For this
accent, it was assumed that only the held-out set was avail-
able. The same procedure as before was used to create the
component models, but without considering the ME training
set. Moreover, MMIE was not used here, since it led to worse
recognition performances. The systems were evaluated on the
ME test and train6h sets. Since this latter set was not used on
training, its inclusion on evaluation was feasible.

Table 3 summarizes the results obtained. In general, the
same conclusions drawn for the ME data from the previous
experiments can be confirmed here, but with more significant
gains. For instance, in the case where interpolation was ap-
plied as a supervised adaptation technique (3rd row), relative
improvements of about 8%–9% were obtained with respect
to the accent-independent system. With the reduced interpo-
lated model, the relative gains are around 5%–7%. Finally,
slightly better results were obtained using the unsupervised
adaptation scheme (last row).



6. CONCLUSION

In this work, acoustic model interpolation was assessed for a
multiple-accented English data recognition task. Compared
to a previously proposed approach [8] that uses MAP adapta-
tion, it led to a small, but significant, gain of performance for
all the 6 accents represented in the corpus. As an extension
to a previous work [1], this paper has also presented a the-
oretically correct solution to reduce the number of Gaussian
components of the interpolated models.

A major advantage of the interpolation method is its flexi-
bility in the sense that it can be used to rapidly adapt a system
to a new target by simply reassigning the interpolation coeffi-
cients. This characteristic also allows the use of interpolation
as an unsupervised adaptation technique, which leads to com-
petitive performance levels compared to the baseline system.
This technique is especially interesting when the target accent
is not represented in the training data.
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