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ABSTRACT
In this paper a novel method is introduced for propagating
person identity labels on facial images in an iterative man-
ner. The proposed method takes into account information
about the data structure, obtained through clustering. This
information is exploited in two ways: to regulate the similar-
ity strength between the data and to indicate which samples
should be selected for label propagation initialization. The
proposed method can also find application in label propaga-
tion on multiple graphs. The performance of the proposed
Iterative Label Propagation (ILP) method was evaluated on
facial images extracted from stereo movies. Experimental re-
sults showed that the proposed method outperforms state of
the art methods either when only one or both video channels
are used for label propagation.

Index Terms— label propagation, multi-graph label
propagation

1. INTRODUCTION

Annotation typically aims at multimedia data archival and
fast search, based on their semantic annotation (tags). This
situation arises, for example, in the case of television con-
tent annotation in broadcasters’ audiovisual archives. In this
case, archivists usually perform a coarse annotation of the en-
tire video, which, in many cases, is insufficient for journal-
ists to directly access video shots/frames of interest. Such
problems can be overcome with semi-automatic annotation
techniques, based on label propagation [1], which is a semi-
automatic process for spreading semantic labels from a small
set of available labeled data to a much larger set of unlabeled
data. In the case of television content annotation, one type of
semantic information, which is of interest to archivists, con-
cerns the person identities and appearances in videos to be
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archived. Label propagation techniques take into consider-
ation the following assumptions: 1) visual data, e.g., video
shots, frames, facial images, that are similar to each other, ac-
cording to a similarity measure, or that lie in the same feature
space structure (e.g., cluster, manifold) should be assigned the
same label and 2) the initial labeled data should retain their la-
bel during/after label propagation.

Label propagation is performed on the visual data, accord-
ing to a label inference method, which specifies the way the
labels are spread from the set of labeled data to the set of un-
labeled data. Usually, iterative label inference methods are
employed [1]. In these algorithms, label spread is performed
gradually on the unlabeled data, according to some update
rule. The final label allocation converges to a stationary state,
as t → ∞. The stationary state of the iterative algorithm
can be computed beforehand. Therefore, in such cases, these
methods are performed in a single step. Such label propa-
gation methods are introduced in [2, 3, 4]. The performance
of label propagation methods depends highly on the selection
of the initially labeled data set. A method for selecting the
initially labeled data set is presented in [5].

There are also cases, in which multiple graphs are con-
structed for representing the relationships between the visual
data. The fusion of multiple data representations can be
performed either at the graph construction level (early fu-
sion), e.g., by concatenating the separate feature vectors into
a global feature vector, or at the decision level (late fusion),
e.g., by learning a propagation algorithm for each data rep-
resentation and fusing the propagation results. Late fusion
is also called ”multi-modal fusion” of ”multi-modality learn-
ing” [6]. A study on early versus late fusion methods for
semantic analysis of multi-modal video can be found in [7].
Label propagation methods on multiple graphs have been
introduced in [6], [8, 9].

In this paper, we propose a novel method for label propa-
gation on data either with a single or multiple representations
that finds application in person identity label propagation
on monocular/multi-view camera systems. The method first
employs a subspace learning method for representing the



image data. If the data are obtained from multi-view cam-
era systems, the subspace method is employed separately
on all image views. Then, the data graph similarity matrix
(or matrices, in the case of multi-view data) is constructed,
by exploiting the information of the data structure, obtained
through clustering. The clustering information is also ex-
ploited, in the initialization of the first step of the label prop-
agation procedure. Finally, label propagation proceeds in an
iterative way, by gradually adding image data in the initially
labeled data set. The scope for the algorithm is to propagate
facial identity information on all the facial images that appear
in monocular/multi-channel videos. Experimental results
showed the effectiveness of the proposed method in propa-
gating face identity information with respect to state of the
art methods.

2. ITERATIVE LABEL PROPAGATION ON SINGLE
GRAPH

2.1. Cluster-based graph construction

Graph construction begins with the projection of the image
data to a reduced dimensional space, maintaining the locality
information of the data. More specifically, if xi, xj ∈ <N two
images with strong similarity, a projection matrix A ∈ <N×L
with L << N , is searched such that the data projections x′i =
ATxi, x′j = ATxj ∈ <L are mapped close to each other.

Let X′ = [x′1, . . . ,x
′
M ] ∈ <N×M be the data matrix and

G = (X′, E) be the graph, whose nodes are the data matrix
columns and whose edges are the pairwise data relationships.
The edge in the graph that connects the nodes i and j is as-
signed with a value Wij that indicates the similarity between
the adjacent graph nodes. This similarity is computed accord-
ing to the heat kernel equation:

Wij = e−
‖x′i−x′j‖

2

σ , (1)

where σ is the mead edge length distance among neighbors.
Information on the data structure is incorporated into the sim-
ilarity graph W, by applying a clustering algorithm, e.g., k-
means clustering or n-cut [10] on the projected data. In order
to increase the similarity between samples in the same clus-
ter and suppress the similarity between samples in different
clusters, the entries of the weight matrix (1) are modified as
follows:

Wij =

{
Wij , if nodes i, j belong to the same cluster
ηWij , if nodes i, j belong to different clusters,

(2)
where 0 ≤ η ≤ 1 is a penalizing parameter. By setting η = 0,
information transfer between different clusters is prohibited.
On the other hand, if we set η = 1, no clustering information
is taken into account. The influence of the parameter η selec-
tion and of the selected cluster number is examined in Section
4.1.

Instead of using the same penalizing parameter for the
similarity between data in different clusters that are close to
each other and clusters that are further away, we introduce
a second method for re-calculating the weight matrix, which
takes into account the distance between the cluster centers.
More specifically, we define a new weight matrix W′ with
entries:

W ′ij =


Wij , if nodes i, j belong to the

same cluster
ζ(ci, cj)Wij , if nodes i, j belong to

different clusters,

(3)

where Wij is given by (1), ci, cj are the clusters of nodes i
and j, respectively, and:

ζ(ci, cj) = e−
‖xci−xcj

‖2

σ , (4)

where xci , xcj are the centers of clusters ci, cj , respectively
and σ is defined as in (1). The constructed cluster-based sim-
ilarity matrix is then used in label propagation.

2.2. iterative label propagation

Let us define the set of labeled data XL = {xi}mli=1, which
are assigned labels from the set L = {lj}Qj=1 and a set
of unlabeled data XU = {xi}mui=1. Without loss of gen-
erality, we define the set of labeled and unlabeled data as
X = {x1, . . . ,xml ,xml+1, . . . ,xM}, M = ml +mu. The
vector Y = [y1, . . . , yml , 0, . . . , 0]

T = [YT
L |YT

U ]
T ∈ LM

contains the labels of the labeled data in the first ml positions
and takes the value 0 in the last mu positions. The objective
of label propagation methods is to spread the labels in L from
the set of labeled data XL to the set of unlabeled data XU . For
this reason, a set of functions fi, i = 1, . . . ,M is defined that
assigns on the i-th graph node one value for every possible
label. By defining the matrix F = [fT1 , . . . , f

T
M ]T ∈ <M×Q,

label propagation is performed by the iterative process [4]:

Ft+1 = aSFt + (1− a)Y, (5)

where:
S = D−1/2WD−1/2 (6)

and D is the diagonal matrix with Dii =
∑
jWij . Essen-

tially, the matrix S represents how much the label value of a
node is affected from the label of its neighboring nodes. The
parameter a, 0 ≤ a ≤ 1, regulates the percentage of informa-
tion the node will receive from its neighbors and from its ini-
tial label information. The iterative procedure (5) converges
to the solution [4]:

F = (1− a)(I− aS)−1Y. (7)

Moreover, it is proven in [4] that the iterative process given
by (5) is equivalent to the manifold regularization problem:

Q(F) = 1

2
tr
(
FTLF

)
+ µtr

(
(F−Y)T (F−Y)

)
, (8)



where L = D−1/2(D−W)D−1/2 is the normalized graph
Laplacian and µ = 1−a

a .
The matrix Y ∈ <M×Q represents the initial state, with

values:

Yij =

{
1, if node i is labeled as yi = j,
0, otherwise. (9)

Label propagation performance depends highly on the initial-
ization of matrix Y, i.e., on the selection of the initial data
samples that will be manually assigned a label. Therefore, a
more structured procedure for selecting the initial labeled data
set is followed, that exploits clustering information. At first,
the node from each cluster with the highest within-cluster de-
gree centrality is selected to be in the set XL of initially la-
beled samples. The within-cluster degree centrality for a node
i that belongs to cluster c is measured by summing the edge
weights that connect the node i with all other nodes of cluster
c:

di =
∑
j∈Nc

Wij , (10)

where Nc the set of graph nodes in cluster c. Intuitively, the
node with the highest within-cluster degree centrality is the
most representative cluster node, i.e., the node with the high-
est similarity to all other cluster nodes. Then, the label infor-
mation is propagated to the unlabelled nodes according to the
following decision rule:

yi = argmax
j
Fij . (11)

The values in F (11) are an indication on the ”certainty”
with which the node is assigned a label, i.e., nodes in which
the highest Fij value is much larger to the second highest Fij
value are more probable to be assigned the correct label, while
nodes in which the two highest Fij values are very close to
each other, most probably lie in a ’border’ region between two
visual data classes. Label assignment to such nodes is more
uncertain. The nodes which were assigned a label with the
least certainty form the next set of nodes that will be manu-
ally labeled and inserted in the set XL of labeled nodes. More
specifically, for each node i we compute the difference be-
tween the two largest values in the i-th row of F:

pi = order descendj(Fij , 1)− order descendj(Fij , 2) (12)

where order descendj(Fij , k) is the operator that orders the
rows of F in descending order and returns the k-th largest
value. The q nodes with the smallest difference value are in-
serted in the set XL and, the initial state matrix Y is updated,
in order to include the newly manually labeled nodes and la-
bel propagation is performed again, according to (7) and (11).
The procedure is repeated and the labeled set XL is enriched
with q nodes at the time with the smallest pi value, until the
cardinality of the setXL is a determined percentage (e.g., 5%)
of the overall data number.

3. ITERATIVE LABEL PROPAGATION ON
MULTIPLE GRAPHS

3.1. cluster-based graph construction

When the image data are captured from multi-view cam-
era systems, dimensionality reduction is performed sepa-
rately in each image view, according to the chosen sub-
space method. Let K be the number of image views and
Xk = [xk,1, . . . ,xk,M ] ∈ <N×M , k = 1 . . . ,K the data
matrix of the k-th view. For each image view, a projection
matrix Ak is computed, according to the employed subspace
method and the data projections X′k are computed according
to X′k = AT

kXk. The weight matrices Wk are computed for
each data projection k, k = 1, . . . ,K according to (1). The
data structure of all representations is incorporated into the
weight matrices by performing clustering onto the fused data
representations X̃:

X̃ =
1

K

K∑
k=1

X′k, (13)

according to (2) or (3).

3.2. Iterative label propagation

After the computation of the data projections X′k, k =
1, . . . ,K, label propagation is performed on the projected
data by fusing the information obtained from all represen-
tations. Label propagation is performed concurrently on
the K graphs, by extending the single-graph regularization
framework (8) as a weighted sum of K objective functions
[11]:

Q(F, τ ) = 1

2

K∑
k=1

τk
{

tr
(
FTLkF

)
+ µtr

(
(F−Y)T (F−Y)

)}
,

(14)
where Lk is the normalized graph Laplacian of representation
k. The solution of the minimization framework:

argmin
F,τ
Q(F, τ ), s.t.

K∑
k=1

τk = 1 (15)

is given from the alternating solution of the equations [11]:

F = (1− a)

(
I− a

∑
k

τkSk

)−1
Y, (16)

τk =

(
tr(FTLkF) + µ‖F−Y‖2

)−1/(K−1)∑K
k=1 (tr(FTLkF) + µ‖F−Y‖2)−1/(K−1)

, (17)

where Lk = I − Sk, Sk = D−1/2WkD
−1/2 and a = 1

1+µ .
Finally, the initialization of the labeled data set XL is per-
formed according to the iterative procedure described in Sub-
section 2.2.



4. EXPERIMENTS

The performance of the proposed method was tested on per-
son identity label propagation on 13,850 stereo facial images
belonging to 131 actors extracted from three stereo movies
through automatic detection and tracking. A varying number
of stereo facial images were extracted from each trajectory,
according to the trajectory length. In total, 5,398, 3,498 and
4.954 stereo facial images were extracted from movies 1, 2
and 3, respectively. The data views are the left and right chan-
nel facial images (K = 2). The subspace methods used for
performing dimensionality reduction are Locality Preserving
Projections (LPP) [12], Orthogonal Locality Preserving Pro-
jections (OLPP) [13], Locality Preserving Projections with
Pairwise Constraints (PCLPP) [14], and Neighborhood Pre-
serving Embedding (NPE) [15]. In the case of PCLPP, the
similarity and dissimilarity constraints were constructed ac-
cording to the following rules:
• Two facial images are similar and, thus, are assigned the

same label if they belong to the same facial image trajec-
tory

• Two facial images are dissimilar and, thus, are assigned
different labels if they are in the same frame.

The proposed method operates both on single-view and multi-
view data. The performance of the proposed method on
single-view data was tested on the left channel of the stereo
images. The performance of the proposed method on multi-
view data was tested on both channels of the stereo images.

4.1. Effect of parameters η and ζ to ILP

In this section, the effect of the prior information imposed on
the projected data weight matrix obtained through clustering
in the classification performance of the proposed algorithm is
examined. More specifically, the classification performance
was tested for parameter η values 0 (i.e., label propagation be-
tween clusters is prohibited), 0.2, 0.4, 0.6, 0.8 and 1 (i.e., no
clustering information is exploited in the weight matrix). The
experiment was conducted on the left image channel and the
employed subspace method is LPP. The number of clusters
used in the experiments was 170, 100 and 150, for the Movies
1-3. In all experiments, the data dimensionality is reduced to
75. The experimental results are shown in the first six rows
of Table 1, where it is evident that the optimal classification
accuracy for each movie is achieved for η = 0.4 or η = 0.8.
Table 1 shows that the classification accuracy of the algorithm
is sensitive to the selection of η. In all Movies, the classifi-
cation accuracy is worse for η = 0, i.e., when label propaga-
tion is restricted within the clusters. Finally, we examine the
classification performance when the exponential parameter ζ
in (4), that takes into account the distance between the clus-
ter centers, is exploited in label propagation. We notice that,
even though the use of ζ does not lead to the best classifica-
tion accuracy for all three movies, it still achieves the optimal

Table 1. Significance of parameters η and ζ to the classifica-
tion accuracy of iterative label propagation.

Movie 1 Movie 2 Movie 3 Average
η = 0.0 71.66% 48.60% 56.59% 60.05%
η = 0.2 74.21% 53.30% 64.61% 65.53%
η = 0.4 74.60% 54.33% 64.81% 66.01%
η = 0.6 74.95% 55.36% 64.26% 66.20%
η = 0.8 75.18% 56.23% 63.89% 66.38%
η = 1.0 75.04% 56.06% 64.51% 66.56%

ζ 75.24% 55.98% 64.56% 66.58%

average classification accuracy. In the rest of the experiments,
clustering information will be imposed to the weight matrix
with the adaptive parameter ζ.

4.2. Effect of labeling initialization to ILP

In this section, we examine the effect of the proposed method
for selecting the initially labeled data set in the classifica-
tion accuracy, when dimensionality reduction is performed
through various subspace methods. First, the facial images
of the Movies 1-3 were divided into 170, 100 and 150 clus-
ters, respectively and the facial images that correspond to the
cluster centers were manually labeled. In each iteration of the
algorithm described in Subsection 2.2, 33, 25 and 33 images
in the border between clusters (that have the smallest ”cer-
tainty”) were assigned labels manually. The procedure was
repeated 3 times. In all experiments, the initial manually la-
beled data set consists 5% of the facial images, i.e., for the
movies 1-3 the manually labeled data set consists of 270, 175
and 250 facial images, respectively.

We compare the classification performance, when the ini-
tially labeled data set is selected randomly, without taking into
account any prior information, as typically proposed in the lit-
erature. Experimental results for the case of single-view facial
images are shown in Table 2 and for the case of multi-view
(stereo) facial images are shown in Table 3. We notice that,
in all cases, the proposed method outperforms the state of the
art methods. More specifically, for the case of single-view
images, the increase in classification accuracy with the pro-
posed method is 4.71%-6.77% better than that of the state of
the art. Similar results are obtained for the case of multi-view
images, where the increase in achieved classification accuracy
is 4.82%-6.28%.

5. CONCLUSIONS

In this paper a novel method for propagating person identity
labels on facial images extracted from stereo videos was in-
troduced. The proposed method operates either on data with
a single or multiple views. The method exploits information
about the data structure obtained from the application of a



Table 2. Classification accuracy of the proposed single-view
iterative label propagation and state of the art label propaga-
tion when LPP, OLPP, PCLPP and NPE were used for dimen-
sionality reduction for three stereo movies

random LPP PCLPP OLPP NPE
Movie 1 71.39% 73.21% 66.47% 72.75%
Movie 2 53.01% 57.17% 46.23% 54.19%
Movie 3 59.30% 60.25% 57.74% 59.48%
Average 61.67% 63.83% 57.46% 62.54%

ILP LPP PCLPP OLPP NPE
Movie 1 75.24% 78.19% 72.11% 77.18%
Movie 2 55.98% 61.78% 51.96% 55.90%
Movie 3 64.56% 65.39% 64.22% 64.38%
Average 66.58% 69.48% 64.23% 67.25%

Table 3. Classification accuracy of the proposed multi-view it-
erative label propagation and state of the art label propagation
when LPP, OLPP, PCLPP and NPE were used for dimension-
ality reduction for three stereo movies.

random LPP PCLPP OLPP NPE
Movie 1 74.26% 75.71% 68.40% 75.64%
Movie 2 56.05% 59.77% 48.68% 57.46%
Movie 3 61.50% 62.54% 63.06% 63.14%
Average 64.33% 66.28% 60.80% 65.82%

ILP LPP PCLPP OLPP NPE
Movie 1 77.77% 80.78% 75.02% 79.62%
Movie 2 60.18% 65.37% 53.33% 61.74%
Movie 3 67.59% 68.66% 67.32% 67.08%
Average 69.71% 72.56% 66.83% 70.64%

clustering algorithm. Experimental results showed that the
proposed method outperforms state of the art methods either
when only one or both video channels are used for label prop-
agation.
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