
STOCKWELL TRANSFORM OPTIMIZATION
APPLIED ON THE DETECTION OF SPLIT IN HEART SOUNDS.

Ali Moukadem, Zied Bouguila, Djaffar Ould Abdeslam and Alain Dieterlen.

MIPS Laboratory, University of Haute Alsace, 68093 Mulhouse, France.

ABSTRACT

The aim of this paper is to improve the energy concentra-
tion of the Stockwell transform (S-transform) in the time-
frequency domain. Several methods proposed in the litera-
ture tried to introduce novel parameters to control the width
of the Gaussian window in the S-transform. In this study,
a modified S-transform is proposed with four parameters to
control the Gaussian window width. A genetic algorithm is
applied to select the optimal parameters which maximize the
energy concentration measure. An application presented in
this paper consists to detect split in heart sounds and cal-
culate its duration which is valuable medical information.
Comparison with other famous time-frequency transforms
such as Short-time Fourier transforms (STFT) and smoothed-
pseudo Wigner-Ville distribution (SPWVD) is performed and
discussed.

Index Terms— Stockwell transform, energy concentra-
tion, genetic algorithm, heart sounds, valvular split.

1. INTRODUCTION

The Stockwell Transform (S-transform) can be considered
as a hybrid between the Short Time Frequency Transform
(STFT) and the wavelet transform [1]. It can be viewed as
a frequency dependent STFT or a phase corrected wavelet
transform. It has gained popularity in the signal processing
community because of its easy interpretation and fast com-
putation [2]. The S-transform has been shown high perfor-
mance in classification and feature extraction problems ap-
plied on non-stationary signals, such as heart sounds [3–5],
power quality signals [6], EEG signals [7] etc.

Classically the S-transform uses a Gaussian window,
whose standard deviation varies over frequency. Whatever
the analyzed signal, the width of the Gaussian window will
decrease as the frequency increases. This produces a higher
frequency resolution at lower frequencies and a higher time
resolution at lower frequencies. However, the S-transform
can suffer from poor energy concentration in time-frequency
domain [8]; the window width of the classic S-transform
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can be considered as limitation since it doesnt take into con-
sideration the nature of analyzed signal. It would be more
appropriate to adapt the window to the signal in order to
maximize the energy localization of the S-transform. The
energy concentration in the Time-Frequency (TF) domain is a
very important factor for the algorithms that aim to detect or
extract relevant feature from time-frequency domain. Hence,
the importance of an energy concentration optimization pro-
cess to improve the segmentation and the classification of
non-stationary signals. As it is well known, the ideal time-
frequency transformation should only be distributed along
frequencies for the duration of signal components. So the
neighboring frequencies would not contain any energy and
the energy contribution of each component would not exceed
its duration [9].

Many studies tried to improve the Time-Frequency (TF)
representation of the S-transform by controlling better the pa-
rameters of the Gaussian window [10–14]. The main study in
the literature interested to optimize the energy concentration
directly in the TF domain was the study of Sejdic et al. [15].
That is, to minimize the spread of the energy beyond the ac-
tual signal components. The authors tried to introduce a new
parameter to the Gaussian window modulation and vary it to
maximize the concentration energy measure.

The main contribution of this paper is the optimization of
the S-transform energy concentration. For that, new parame-
ters are introduced to control better the width of the Gaussian
window and a Genetic Algorithm is applied to select prop-
erly these parameters. A direct application of the proposed
method is the detection of split in heart sounds which can be
considered as valuable medical information [16]. We show
the importance of the time-frequency resolution enhancement
in order to detect accurately split and to calculate its duration.
The new modified S-transform is compared with the method
proposed by Sejdic et al. [15] and other time-frequency rep-
resentations such as STFT and SPWVD.

This paper is organized as follows: Section 2 presents the
proposed modified S-transform with the optimization process
based on genetic algorithm. Section 3 presents the application
on heart sounds proposed in this paper. Section 4 compares
the proposed method with other TFRs and shows the results
of the split durations calculated on simulated heart sounds.
Finally, section 5 gives the conclusion and the future work.



2. STOCKWELL TRANSFORM OPTIMIZATION

2.1. The original S-transform

The original S-Transform of a time varying signal is defined
by [1]:

Sx(t, f) =

∫ +∞

−∞
x(τ)w(τ − t, f)e−2πjfτdτ (1)

Where the window function w(τ − t, f) is chosen as:

w(t, f) =
1

σ(f)
√
2π
e

−t2

2σ(f)2 (2)

And σ(f) is a function of frequency as:

σ(f) =
1

|f |
(3)

The window is normalized as:∫ +∞

−∞
w(t, f)dt = 1 (4)

This gives the direct relation between the S-transform and the
Fourier spectrum by averaging the local spectrum over time:∫ +∞

−∞
Sx(t, f)dt = X(f) (5)

Where X(f) is the Fourier transform of x(t). The signal x(t)
can be recovered from Sx(t, f) as follows:

x(t) =

+∞∫
−∞


+∞∫
−∞

Sx(τ, f)

ei2πftdfdτ (6)

2.2. The modified S-transforms in the literature

To control better the resolution of the S-transform, McFad-
den et al. [11] and later Pinnegar and Mansinha [10, 12] in-
troduced the generalized S-transform with a set of parameters
that determine the shape and properties of the window. For
the Gaussian window, the parameter is introduced as follows:

w(τ − t, f) = |f |
γ
√
2π
e

−f2(τ−t)2

2γ2 (7)

This allows a better control of the time-frequency resolution
of the S-transform by controlling the width of the Gaussian
window. Another way to control the width of the window in
the S-transform is proposed by Sejdic et al. [15] and consists
to fix γ to 1 and introduce a new parameter r as follows:

w(τ − t, f) = |f |
r

√
2π
e

−f2r(τ−t)2
2 (8)

The authors vary the parameter r until the maximum of the
energy concentration measure is reached.

2.3. The proposed S-transform

In this paper, we propose to introduce a new Gaussian window
with the follows standard deviation:

σ (f) =
mfp + k

fr
(9)

In this case γ = mfp+ k and the modified Gaussian window
can be given as:

w(τ − t, f) = |f |r

(mfp + k)
√
2π
e

−(τ−t)2f2r

2(mfp+k)2 (10)

The parameter fr/(mfp + k) represents the number of cy-
cles (periods) of a frequency that can be contained within one
standard deviation σ of the Gaussian window. The introduced
parameters m, p, k and r aim to give more flexibility to the
Gaussian window. The modified S-transform becomes:

Sm,p,k,rx (τ, f) =

+∞∫
−∞

x(t)
|f |r

(mfp + k)
√
2π
e

−(τ−t)2f2r

2(mfp+k)2 e−i2πftdt

(11)
The new window satisfies the normalization condition for the
original S-transform window which insures the invertibility
of the modified S-transform:

+∞∫
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(mfp + k)
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−(τ−t)2f2r

2(mfp+k)2 dt = 1 (12)

2.3.1. Generate optimal parameters by using a genetic algo-
rithm

A crucial question is how to choose the parameters of the
Gaussian window? Select empirically the values ofm, p, k
and r will may not be adequate for some types of signals.
It will be more appropriate to generate automatically adap-
tive parameters which respect the nature of analyzed signal.
In this paper, we propose to apply a genetic algorithm to se-
lect automatically the parameters m, p, k and r (see Fig. 1).
Genetic Algorithm (GA) based on the mechanisms of natural
selection and genetics, has been developed since 1975 [17].
GA has been proven to be very efficient and stable in search-
ing for global optimum solutions. Usually, a simple GA is
mainly composed of three operations: selection, genetic op-
eration, and replacement [18].

The fitness function used in this paper is the energy con-
centration measure proposed in [19]. By applying this mea-
sure to the modified S-transform, we obtain:

CM(m, p, k, r) =
1

+∞∫
−∞

+∞∫
−∞

∣∣∣Sm,p,k,rx (t, f)
∣∣∣ dtdf (13)



Fig. 1. The proposed optimization module.

Where the modules of the S-transform is normalized as:

Sm,p,k,rx (t, f) =
Sm,p,k,rx (t, f)√

+∞∫
−∞

+∞∫
−∞

∣∣∣Sm,p,k,rx (t, f)
∣∣∣2dtdf (14)

Then, the optimization problem can be expressed as follows:

argmax
m,p,k,r

 +∞∫
−∞

+∞∫
−∞

(
1/
∣∣∣Sm,p,k,rx (t, f)

∣∣∣ ) dtdf
 (15)

where m, p, k and r ∈]0, 3]. The GA parameters are choosen
empirically; The population size is 20, the cross over rate is
0.8, the mutation rate is 0.05 and the chromosome length is
4(since we have 4 variables to optimize: m, p, k and r).

3. APPLICATION ON THE DETECTION OF SPLIT
IN HEART SOUNDS

The analysis of the cardiac sounds solely based on the hu-
man ear is limited by the experience of the clinician for a
reliable diagnosis of cardiac pathologies and to obtain all the
qualitative and quantitative information about cardiac activ-
ity. Proposing an objective signal processing methods able to
extract relevant information from heart sounds is a great chal-
lenge for specialists and auto-diagnosis fields. The electronic
stethoscope is capable to register and optimize the quality
of the acoustic heart signal, completed by the PhonoCardio-
Graphic (PCG) presentation of the auscultation signal. The
localization of the first and the second heart sounds (S1 and
S2), the number of their internal components, their frequential
content, etc. can be considered as pertinent information very
useful for patricians and for classification systems [5]. The
application proposed in this paper consists to detect splits in
heart sounds. The split within the S1 and the S2 heart sounds

Fig. 2. Example of split detection in the first heart sound; (a)
S1 extracted from real heart sound; (b) The proposed opti-
mized S-transform of the heart sound; (c) The extracted enve-
lope with the detected local extrema corresponding to the two
components of the heart sound.

emerged as an indicator of several valvular diseases [16]. In
addition, the PCG signal is a powerful tool for assessing the
pulmonary artery pressure. Xu et al. found out that the pul-
monary artery pressure is correlated with the split in S2 [20].
We use the modified S-transform proposed in this paper to
detect split and calculate its duration. The optimization of
the time-frequency representation of heart sounds can lead to
more objective and reliable methods and diagnostics. The
proposed algorithm to detect splits in heart sounds can be
summarized as follows:

• First, the heart sound is segmented by using the proposed
algorithm in [5] to detect the first and the second heart
sounds.

• We calculate the optimized S-transform Sm,p,k,rx for each
segmented sound.

• Then, we calculate the envelope of the segmented sound
xi based on the optimized S-transform as follows:

Env(xi) = −
+∞∫
−∞

∣∣Sm,p,k,rx (τ, f)
∣∣2 log(∣∣Sm,p,k,rx (τ, f)

∣∣2)df
(16)

• Finally, we apply an algorithm to detect the local extrema
of the extracted envelope.

Normally, a heart sound with split is supposed to have two
local extrema in its extracted envelope. The duration of split is
calculated as the distance between the two detected ex-trema.
Figure 2 shows the optimized S-transform calculated for a real
heart sound S1 with split and its extracted envelope.



Fig. 3. Time-Frequency representation of the test signal: (a)
STFT; (b) SPWVD; (c) S-transform proposed by Sejdic et al.;
(d) the proposed S-transform

4. RESULTS AND DISCUSSIONS

Firstly, we apply the proposed S-transform on test signal
and real heart sound and we compare the energy concentra-
tion with other time-frequency representations: the modi-fied
S-transform proposed by Sejdic et al. [15], the Short-time
Fourier Transform (STFT) and the smoothed-pseudo Wigner-
Ville distribution (SPWVD). Then, we apply the proposed
method on a simulated S2 sound with various split durations.

4.1. Energy Concentration

A test signal of two crossing components and a real heart
sound (HS) S1 are used as example to compare between the
different time-frequency representations (see Fig. 3 and 4).
Table 1 shows the different concentration measures (CM) for
each signal.

CM STFT SPWVD ST-Sej Proposed
Test signal 0.0042 0.0055 0.0045 0.005
Real HS 0.0126 0.016 0.0136 0.0147

Table 1. Shows the concentration energy measures (CM) ap-
plied on a synthetic signal and a real heart sound S1 (HS).

Figure 3 shows the time-frequency representation of the
different transforms applied on the test signal. The SPWVD
gives a very good energy concentration, however in the mul-
ticomponent zone the transform still suffer from interference
terms and from poor resolution for the non-linear chirp com-
ponent at high frequencies. The optimization of the ST pro-
posed in [15] gives a good energy concentration for middle
and high frequencies but its performance de-creases in low
frequencies. The proposed S-transform in this paper gives a
good compromise overall the time frequency plane (see Fig-
ure 3 (d) and Table 1 CM=0.005).

4.2. Split detection in heart sounds based on the opti-
mized S-transform

We generate simulated S2 heart sounds with various split du-
rations. The detection algorithm (section 3) is applied and the
durations of splits are calculated. The S2 simulated signals
used are based on the model proposed in [20].

Split(ms) 30 45 60
Error(S2) 2 3.2 4.3
Error(S2+Noise) - 4.1 5.6

Table 2. Shows the duration split error (ms) calculated by the
proposed algorithm for simulated S2 sound with various split
durations without and with additive Gaussian noise

Measures in Table 2 are performed on one simulated S2
sound without and with additive noise. The optimized S-
transform shows clearly its ability to detect and calculate split
duration in heart sounds (error lower than 6 ms in presence of
noise).

5. CONCLUSION

We presented in this paper a new method to improve the en-
ergy concentration of the Stockwell transform. The proposed
method is based on a modified Gaussian window with a stan-
dard deviation controlled by four parameters. The new win-
dow is more flexible hence more adaptive to the analyzed
signal. The parameters of the window are chosen by a Ge-
netic Algorithm that selects the parameters which maximize
the energy concentration in the time-frequency domain. Com-
parison with other famous time-frequency transforms such as
STFT, SPWVD and other modified ST proposed in the litera-
ture is performed. First, the different methods are applied on
a test signal and a real heart sound and the corresponding en-
ergy concentration measures are compared. Then, the perfor-
mance of the proposed S-transform is confirmed on simulated
heart sounds (S2) with various split durations. The method
can be useful to other applications related to non-stationary
signals. Finally, more measures on real heart sounds and the-
oretical signals are still needed.
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[9] Karlheinz Gröchenig, Foundations of time-frequency
analysis, Springer, 2001.

[10] L Mansinha, RG Stockwell, and RP Lowe, “Pat-
tern analysis with two-dimensional spectral localisa-
tion: Applications of two-dimensional s-transform,”

Physica A: Statistical Mechanics and its Applications,
vol. 239, no. 1, pp. 286–295, 1997.

[11] PD McFadden, JG Cook, and LM Forster, “Decom-
position of gear vibration signals by the generalised s
transform,” Mechanical systems and signal processing,
vol. 13, no. 5, pp. 691–707, 1999.

[12] C Robert Pinnegar and Lalu Mansinha, “The s-
transform with windows of arbitrary and varying
shape,” Geophysics, vol. 68, no. 1, pp. 381–385, 2003.

[13] C Robert Pinnegar and Lalu Mansinha, “The bi-
gaussian s-transform,” SIAM Journal on Scientific
Computing, vol. 24, no. 5, pp. 1678–1692, 2003.

[14] Said Assous and Boualem Boashash, “Evaluation of
the modified s-transform for time-frequency synchrony
analysis and source localisation,” EURASIP Journal on
Advances in Signal Processing, vol. 2012, no. 1, pp. 1–
18, 2012.

[15] Ervin Sejdic, Igor Djurovic, and Jin Jiang, “A window
width optimized s-transform,” EURASIP Journal on
Advances in Signal Processing, vol. 2008, pp. 59, 2008.

[16] Abdelghani Djebbari and Fethi Bereksi-Reguig, “De-
tection of the valvular split within the second heart
sound using the reassigned smoothed pseudo wigner–
ville distribution,” Biomedical engineering online, vol.
12, no. 1, pp. 37, 2013.

[17] John H Holland, Adaptation in natural and artificial
systems: An introductory analysis with applications to
biology, control, and artificial intelligence., U Michi-
gan Press, 1975.

[18] Kit-Sang Tang, KF Man, Sam Kwong, and Qun He,
“Genetic algorithms and their applications,” Signal
Processing Magazine, IEEE, vol. 13, no. 6, pp. 22–37,
1996.
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