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Abstract

Bottom-up saliency models have been developed
to predict the location of gaze according to the low
level features of visual scenes, such as intensity, color,
frequency and motion. We investigate in this pa-
per the contribution of color features in computing
the bottom-up saliency. We incorporated a chromi-
nance pathway to a luminance-based model (Marat
et al. [1]). We evaluated the performance of the
model with and without chrominance pathway. We
added an efficient multi-GPU implementation of the
chrominance pathway to the parallel implementation
of the luminance-based model proposed by Rahman
et al. [2], preserving real time solution. Results show
that color information improves the performance of
the saliency model in predicting eye positions.

Index Terms— color information, visual saliency, video,
GPU

1. INTRODUCTION

When exploring our visual environment we frequently move
our eyes to select and focus on specific regions of the scene.
The selection is driven by the properties of the visual stimulus
through bottom-up processes, as well as by the goal of ob-
server through top-down processes [3], [4]. Visual attention
models tend to predict the parts of the scene that are likely
to guide visual attention and hence, the gaze of observers
[5], [6], [7], [1]. Most of the models are bottom-up models
based on the Feature Integration and Guided Search theories
[8], [9]. These theories stipulate that some elementary salient
visual features such as intensity, color, depth and motion, are
processed in parallel at a pre-attentive stage, subsequently
combined to drive the focus of attention. This approach is in
accordance with the physiology of the visual system. Hence,
in almost all the models of visual attention, low level features
like intensity, color, spatial frequency are considered to deter-
mine the visual saliency of regions in static images, whereas
motion and flicker are also considered in the case of dynamic
scenes [5], [7], [1]. The contribution of different features like
color in guiding eye movements when viewing natural scenes
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has been debated. Some studies suggested that color has little
effect on fixating locations [10], [11], [12], which brings to
question the necessity of the inclusion of color features in the
saliency models [13].
On the other hand, most of biologically-inspired saliency
models such as Marat et al. [1] involve many computationally
intensive operations. Hence, real-time solutions seem impos-
sible or only achievable by the simplification of whole path-
way, as proposed by Itti [4]. Yet, the evolution of computer
graphics hardware and programming models like CUDA [14]
makes the graphics devices a suitable platform to implement
the real-time solutions for visual attention algorithms.
In this article, we investigate the contribution of color infor-
mation in predictive power of saliency model by incorporat-
ing a chrominance pathway to the luminance-based model
of saliency proposed by Marat et al. [1]. We evaluated the
performance of the model on two datasets of eye movements:
a public dataset for saliency available on CRCNS (Collab-
orative Research in Computational Neuroscience) [15], and
a new dataset that we provided through an eye-tracking ex-
periment using new video stimuli [16]. Then we include a
parallel adaptation of the chrominance-pathway onto the GPU
implementation of the luminance-based model proposed by
Rahman et al. [2].

2. METHOD

2.1. Saliency model

The luminance-based saliency model of Marat et al. [1] draws
inspiration from human visual system. The model consists of
two pathways: static and dynamic. Both pathways are only
based on luminance information of visual scene, processed in
two steps: the first step simulates some basic pre-processing
done by the retina cells through a cascade of three linear fil-
ters: a band pass filter for luminance pre-processing and two
low pass filters for chrominance. The retina separates the in-
put signal into low and high spatial frequencies that schemat-
ically represent the magno- and parvo- cellular outputs of the
retina. At second step each signal is decomposed into ele-
mentary features by a bank of cortical-like filters. These fil-
ters, according to their frequency selectivity, orientation and
motion amplitude, provide two saliency maps: static mapMls

and dynamic map Mld, Figure 1.



Fig. 1: The spatio-temporal saliency model.

The model proposed by Marat et al. is only based on the
luminance information. We incorporated the color informa-
tion to the model. According to psychological and physi-
ological experiments the early transformation of the Long,
Medium and Short wavelength signals, absorbed by cones,
provides an opponent-color space in which signals are less
correlated.
There are several color spaces proposing different combina-
tion of cone responses to define the principal components
of luminance and opponent colors, red-green (RG) as well
as blue-yellow (BY) [17]. One space might be preferred to
another according to application needs. Here, we selected
Krauskpof et al. [18] color space to encode color informa-
tion, because it has been validated for encoding images that
are observed in I.T.U recommended conditions [19]. This
color space was also used in the saliency model proposed by
Le Meur et al. [7]. A color image is encoded into orthogonal
directions, A, Cr1 and Cr2, which represent luminance, chro-
matic opponent red-green and chromatic opponent yellow-
blue respectively. The following equation is used to compute
A, Cr1 and Cr2. A
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The human visual system is sensitive to the high spatial fre-
quencies of luminance and the low spatial frequencies of
chrominance [20], [21]. The amplitude spectra of the two
color-opponent Cr1 and Cr2 images do not have as many spe-
cific orientations as the amplitude spectra of the luminance
image [22]. Hence the retinal and cortical processing of
chrominance information is different from luminance infor-
mation. We integrated to the Marat et al. [1] spatio-temporal
saliency model, the chrominance processing steps first in-
troduced by Ho-Phuoc et al. [23]. The retinal processing
step of chrominance information starts with low pass filter-
ing illustrated by the contrast sensitivity functions (CSFs)
for chrominance information [7]. Following these CSFs, the
two color opponents are processed by two low-pass filters.
Then the cortical like filters extract the spatial information
of Cr1 and Cr2 color opponents according to 4 orientations
(0, 45, 90, and 135 degrees) and 2 spatial frequencies( 1

16 ,
1
32

1/pixel), providing a chrominance-based static saliency map
Mcs. Luminance-based static saliency map Mls, luminance-
based dynamic saliency map, Mld and chrominance saliency
map Mcs, after normalizing, are combined, according to
the following equation, to obtain a master spatio-temporal
saliency map per video frame. This map predicts the salient
regions i.e. the regions that stand out in a visual scene.

Saliency map = αMls + βMld +Mcs + αβ(Mls ×Mld)

Where, α and β are the max of Mls and skewness of Mld re-
spectively. Figure 3, extracted from [16], shows an example
frame and its intermediate and final saliency maps.
In addition, we compared the performance of the model with
one of the reference saliency models, Itti and Koch saliency
model [24], [5]. The performance of Itti and Koch saliency
model was also evaluated once using all features with equal
weights (intensity, orientation, contrast, flicker and motion
and DKL color features), and once using all features except
color.

GPU implementation. The saliency model presented
above with luminance-based static, chrominance-based static
and luminance-based dynamic pathways is compute-intensive.
Rahman et al. [2] have proposed a parallel adaptation of two
luminance-based pathways onto GPU. The sequential code
has been decomposed into two sub-programs: one running on
the host (the CPU) and kernel code running on the device (the
GPU). The host code is responsible for all data read/write
operations from disk and data copy operations to/from the
device, while the device codes perform the tasks in parallel.
The kernel code is compiled by the nvcc compiler supplied



Fig. 2: An example frame and its corresponding saliency
maps,(a) Original frame (b) luminance saliency map Mls, (c)
dynamic saliency map Mld, (d) chrominance Mcs, (e) fusion
of Mls and Mld, (f) fusion of Mls, Mcs and Mld.

by NVIDIA. We included the parallel adaptation of chromi-
nance pathway to this GPU implementation maintaining the
real time solution. Algorithm 1 shows the sequentially exe-
cuted kernels providing chrominance saliency map for each
of opponent-color components.

Input: An image Im of size w × l
Output: A saliency map

1 map← RetinalF ilter (Im) ;
2 map← FFT (map) ;
3 for i← 1 to orientations do
4 for j ← 1 to frequencies do
5 maps[i,j]← GaborF ilter (map,i,j) ; maps[i,j]

← IFFT (map,i,j) ; maps[i,j]
← Normalizations (map,i,j) ;

6 end
7 end
8 saliency← Summation (maps) ;
Algorithm 1: Chrominance pathway for each of the
opponent-color images, Cr1 and Cr2.

The chrominance pathway includes the Retina filter with
low-pass filters using 2D convolutions and recursive Gaussian
filters, normalizations with reduction operations, some sim-
ple matrix operations and Fourier transforms. The NVIDIA
CUDA fast Fourier transform library (cuFFT) was used to
perform the complex Fourier transformations. The reductions
use Thrust library, an interface to many GPU algorithms and
data structures. Such as the luminance-based static and dy-
namic pathways implementations, chrominance pathway was
tested on a 2.67 GHz quad-core system with 10 GB of main
memory, and Windows 7 running on it. CUDA v3.0 program-
ming environment on NVIDIA Geforce GTX 480 was used.
The chrominace pathway was evaluated with image sizes of
640× 480.

NSS metric. A common metric to compare experimental
data to computational saliency maps is the Normalized Scan-
path Saliency (NSS ) [25]. We used this metric to compare C
and GS eye positions to their equivalent saliency maps. To
compute this, first the saliency maps were normalized to zero
mean and unit standard deviation. The NSS value of frame
k corresponds to averaged saliency values at the locations of
eye positions on the normalized saliency map Mls as shown
in the following equation:

NSS(k) =
1

N

N∑
i=1

1

σk
(Mls(Xi)− µk)

where N is the number of the eye positions, µk and σk are
the mean and standard deviation of the initial saliency map of
frame k. A high positive value of NSS indicates that the eye
positions are located on the salient regions of the computa-
tional saliency map. A NSS value close to zero represents no
relation between eye position and the computational saliency
map, while a high negative value of NSS means that eye posi-
tions were not located on the salient regions of computational
saliency map.

2.2. Eye-tracking experiment

We used two datasets of eye movements to evaluate the per-
formance of the saliency model: eye movement data from CR-
CNS public dataset of MTV experiment [15], and eye move-
ment data obtained from an eye-tracking experiment that we
carried out for evaluating the model, called person-present
stimuli experiment (PPS experiment). The dataset of MTV
experiment comprises eye movement recordings from 8 dis-
tinct subjects watching 50 different video clips ( 460 × 640
pixels, 33.185 ms/movie frame). The subjects were asked to
follow main actors and actions, and to try to understand over-
all what happens in each clip [26]. In this experiment only
color stimuli was employed.
In PPS experiment we recorded eye movement data of 45 vol-
unteers (25 women and 20 men, aged from 25 to 39 years
old) while freely viewing videos in two conditions: color and
grayscale. An Eyelink 1000 from SR research was used to
record the eye positions in a pupil tracking mode. The stimuli
consisted of 65 short video extracts of 3 to 5 seconds, called
video snippets. Video snippets were extracted from various
open source color videos. The stimuli measured 640 × 480
pixels, subtending a visual angle of 25 × 19 degrees at a
fixed viewing distance of 57 cm. The temporal resolution of
video snippets was 25 frames per second. The video stim-
uli was also presented in grayscale condition to compare the
luminance-based model with the eye positions recorded in
this condition. The video dataset was converted to grayscale
according to the equation 1.

L = 0.5010×R+ 0.4911×G+ 0.0079×B (1)



In most of studies investigating the influence of color infor-
mation on eye movements, the grayscale version of stimuli
is obtained using NTSC conversion, which is based on the
weighted sums of R, G and B channels [11, 12]. However
such method is not adapted for specific experimental set up.
Here, to ensure the luminance matching between color and
grayscale video stimuli, the weights of R, G and B channels
in equation 1 were found to fit V (λ) of standard observer.
The equation was found by directly measuring the luminance
reflectance of the three color channels of the experimental set
up using a Photo Research PR650 spectrometer. Figure 3 de-
picts example frames of color and grayscale video snippets.

Fig. 3: Example frames in color and grayscale.

Table 1: NSS results for Marat et al. saliency model and Itti
and Koch saliency model and without color features for PPS
experiment.

stimulus luminance luminance
condition + chrominance

Marat Color 0.59 1.18
et al. Grayscale 0.60 1.17

Itti Color 0.91 0.95
and Koch Grayscale 0.93 0.97

Table 2: NSS results for Marat et al. luminace-based and
luminance-chrominance models on MTV experiment dataset
for saliency.

luminance luminance
+chrominance

Marat et al. 0.65 0.90

3. RESULTS

3.1. Saliency model

First, we evaluated the performance of luminance-based
saliency model [1] in predicting the eye positions for both
stimulus conditions using NSS metric. Then we compared the
performance of luminance-based and luminance-chrominance

saliency models. As shown in table 1 chrominance path-
way improves significantly the performance of the model
for color and grayscale stimuli (Grayscale : t(63) =
4.5, p < 0.01, Color : t(63) = 4.86, p < 0.01), while
including color features improves slightly the performance
of the model of Itti and Koch. [5]. We also compared
the performance of luminance-based model with the per-
formance of proposed luminance-chrominace based model
on public dataset for saliency from MTV experiment. As
shown in table 2, for this dataset also the performance of
chrominance-luminance model is significantly higher than
luminance-based model (t(49) = 6, p < 0.001).

3.2. GPU real-time solution

Table 3 shows the execution times of luminance-based path-
ways for parallel solution proposed by Rahman et al. [2] and
chrominance pathway proposed in this article.

Table 3: Timings of sequential (C and Matlab) and parallel
(GPU) implementations in ms.

Msl Mcl Mdl

MATLAB 34.01 22.67 237.03

C 10.73 7.15 31.24

CUDA 0.04 0.03 0.12

The GPU implementation for the three pathways results to
significant speed-up over matlab and C that provides a real-
time solution.

3.3. Conclusion

In the present manuscript, we have integrated color infor-
mation into our bio-inspired saliency model. We added the
parallel GPU implementation of chrominace pathway to the
existing luminance-based pathways. The real-time solution
enables the model to be used in many applications such as
robotics vision, image analysis and compression. Results
show that including a chrominance pathway to the model,
improves its predictive power significantly on both PPS and
MTV datasets. Yet, the performance of model on videos stim-
uli of PPS experiment is higher than video stimuli of MTV
experiment. This might be due to a principal difference be-
tween contents of MTV stimuli and PPS. In PPS experiment,
most of the video clips include scenes with presence of close-
up faces (51 person-present scenes versus 14 person-absent
scenes), which are one of the high level stimulus proper-
ties that have a significant impact on the gaze location and
increases the congruency between observers [27].
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