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ABSTRACT

Compact Descriptors for Visual Search (CDVS) is MPEG

proposed standard that will enable efficient and interoperable

design of visual search applications using local descriptors.

Such descriptors are invariant to rotation and scaling, but are

not very robust towards viewpoint changes. In this paper, we

address this problem and propose a modified version of the

CDVS pipeline that employs image back-projection to com-

pensate for perspective distortion. The proposed technique is

based on the homography derived from the correspondence

extracted from pairs of matching keypoints. Extensive result-

s show that it improves the CDVS matching accuracy under

viewpoint changes while having low complexity.

Index Terms— CDVS, Content based image retrieval,

Homography, SIFT descriptors

1. INTRODUCTION

Image matching refers to declaring two different images as

similar or different solely based on their content. It is typi-

cally performed employing SIFT descriptors [1], wherein t-

wo important stages are identified, namely keypoint detection

and feature matching. Keypoint detection employs a scale s-

pace to identify relevant points of interest, e.g., corners, in

a way that is invariant to the scale factor of the image. Ev-

ery keypoint is then represented by its coordinates, scale, as

well as a feature vector summarizing the information in a s-

mall patch centered around the descriptor. The two sets of

descriptors for each pair of images are then matched, in order

to identify a set of keypoints that are deemed to be matched

corresponding points in either image. To witness the impor-

tance of image matching, MPEG is standardizing a pipeline

for image retrieval using compressed SIFT descriptors, called

CDVS (Compact Descriptors for Visual Search) [2].

Remarkably, SIFT descriptors exhibit good invariance to

rotations, occlusions and small illumination changes. How-

ever, they do not exhibit any built-in resilience to viewpoint

changes. An image taken at different viewpoint from anoth-

er image will have a perspective distortion, which is going to

negatively affect matching results. If the viewpoint change is

too severe, SIFT descriptor will fail at correctly matching the

two images. This is a very important problem, since in the

real world pairs of pictures are almost invariably taken from

different viewpoints.

Concerning resilience to perspective transformations, sev-

eral techniques have been developed. Hessian-Affine [3] and

Harris affine techniques [4] achieve robustness to the trans-

formation via an iterative shape adaptation algorithm to com-

pute the local affine transformation for each interest point.

Maximally stable extremal regions are based on extracting

a comprehensive number of corresponding image elements

contributing to improve affine invariance [5]. Salient detector

identifies ellipsoidal regions, which is a better approximation

of viewpoint change [6]. ASIFT simulates all image views

obtainable by varying the camera axis to diminish the per-

spective effects [7]. However, ASIFT has relatively higher

complexity than conventional SIFT descriptors.

In this paper we also address the problem of viewpoint-

invariant image matching. There are two aspects that differ-

entiate this work significantly from previous papers. First,

we aim at developing a solution that is compliant with CD-

VS. Therefore, any modifications must not involve the key-

point detector and descriptor, which are specified by the s-

tandard. Second, we apply a different transform, i.e., the ho-

mography transform, to compensate for viewpoint changes.

To our best knowledge, this is the first time that this transfor-

m is employed to improve robustness of local descriptors to

viewpoint changes. In summary, the proposed technique can

be seen as an add-on to the CDVS retrieval pipeline, where

the standard pipeline is run first, and our proposed technique

performs a post-processing a re-ranking stage. Extensive tests

on the CDVS database show that the proposed technique can

improve the matching precision up to 3%.

2. HOMOGRAPHY MODEL

In a content based image retrieval system, two images of the

same scene are to be matched. If the viewpoints between

these images are different, i.e., there is perspective distortion

between them, then a correct matching might not be possible.

To reduce the perspective distortion, we propose to estimate

the homography between the two images [8]. With projec-

tive cameras, any two images of the same planar surface in

space are related by a homography [9]. Homography can be

used to estimate the projective position and projective plane.



Once the homography is known, back-projection can be used

to reduce the perspective distortion and improve the image

matching accuracy, as we show in Sec. 3.

Fig. 1. Homography model.

Figure 1 depicts a homography model. Image 1 and Im-

age 2 are images of a 2D planar object. One point on Image 1

correspond to another point on Image 2 when they both reflect

the same point on the object. Images of 2D planar objects are

obtained via projective reflection. Thus images with different

viewpoints are from a different reflection. These reflection-

s are projectively related in geometry. This relationship can

be estimated after knowing corresponding pairs of points be-

cause it is a homogenous relationship among all the points on

the planes.

The mathematical definition of a homography is given be-

low:
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Then: Pb = HabPa where Hba = H
−1

ab
. Pa and Pb

are the corresponding points on different 2D planes. Notice

that points laying on R
2 are normally represented as a pair

(x, y)T . However in projective geometry intersection points

of lines or planes are more relevant. For a homogenous rep-

resentation, a third coordinate is added as a scale variable [9].

Therefore, an arbitrary homogeneous vector representative of

a point is of the form x = (x1, x2, x3)
T , representing the

point (x1/x3, x2/x3)
T in R

2. The points at infinity can be

represented with x3 = 0. Hab is the homography matrix,

representing the projection of point Pa to Pb. Hba is the cor-

responding inverse transformation.

To qualify the perspective distortion, we need to estimate

the homography matrix. Direct Linear Transformation (DLT)

is one of algorithms to determine Hab, given a set of 2D to

2D point correspondences xi ↔ x
′

i
[9]. xi and x

′

i
are the

corresponding points on different planes.

It can be shown [9] that it is necessary to specify four

pairs of point correspondences in order to constrain Hab ful-

ly. If exactly four pairs are given, then a unique solution for

the matrix Hab exists. However, since matching pairs are not

known exactly, because of the nonideality of the keypoint de-

tector, if more than four correspondences are given then these

correspondences may not be fully compatible with any pro-

jective transformation, and one will be faced with the task of

determining the best transformation given the data. General-

ly, this can be done by finding the homography matrix that

minimizes a cost function or ruling out the outliers with the

help of RANSAC [9].

Letting pairs of correspondences be related by x
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the DLT algorithm [9] finds the homography as the solution

of
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Eq. 3 has the form Ah = 0. Once we have four pairs of

point correspondences, we obtain a set of equations, where

A is the matrix of coefficients built from the matrix rows Ai

from each correspondence, and h is the vector we seek to con-

struct estimated homography matrix Hab.

If more than four point correspondences are given, then

the set of equations Ah = 0 is over-determined. If the po-

sition of the keypoints are exact, there will not be an exact

solutions to the over-determined system Ah = 0 apart from

the zero solution. However, we cannot be sure that all the

available correspondence pairs are reliable, so we must iden-

tify and remove outliers before estimate the homography.

To this end, we employ RANSAC, which is an iterative

method to estimate parameters of a mathematical model from

a set of observed data which contains outliers [10]. The idea

is very simple: two of the points are selected randomly; these

points define a line. The confidence score for this line is cal-

culated as the number of points that lie within a maximum

distance. This random selection is repeated a number of times

and the line with highest confidence score is deemed the ro-

bust fit. The points within the threshold distance are the in-

liers.

The aim of this stage is two-fold: first, to obtain an im-

proved estimate of the homography by using all the inliers

available in the given correspondence pairs (rather than on-

ly the four points of the sample); second, during the follow-

ing back-projection stage, to obtain more matches from the

correspondence set because a more accurate homography is

available. An improved estimate of the homography is then

computed from the inliers.



3. PROPOSED HOMOGRAPHY-BASED RETRIEVAL

STAGE

CDVS is the standard under development in MPEG that will

provide a highly efficient and interoperable pipeline for visual

search; Figure 2 display the local descriptor extraction of CD-

VS [2]. It includes keypoint detection, feature selection, lo-

cal descriptor computation, local descriptor compression and

coordinate coding. Keypoint detection and descriptor compu-

tation are the fundamental operations of visual search. The

purpose of feature selection is to preserve the most significant

keypoints for a low memory consumption. Local descriptor

compression and coordinate coding both aim to decrease the

memory consumption and transmission bandwidth.

Fig. 2. CDVS local descriptor extraction.

In the CDVS standard, whether two images will be de-

clared as matched or not depends on their matching score.

Each pair of matched features will be assigned a score and

the total image matching score is obtained by summing up

all the scores of the matched features on that image. How-

ever, since CDVS is not viewpoint robust by construction, it

may wrongly declare matching or non-matching images be-

cause of perspective distortion. In this paper we argue that

perspective distortion can be reduced by homography esti-

mation and back-projection. Back-projection consists in in-

verting the perspective transformation. The first step towards

back-projection is to estimate the homography that defines the

inverse transformation.

Fig. 3. Integrated back-projection CDVS.

As has been said, a homography can be derived from at

least 4 pairs of corresponding points. However, the image

matching process will typically provide more than 4 match-

ing pairs. In our proposed system, we used the DLT algorithm

and RANSAC, as detailed in Sec. 2, to estimate the homogra-

phy. Then, the perspective distortion can be reduced applying

back-projection.

In particular, the proposed estimation and back-projection

process operates as follows. Suppose two images Ia and Ib
have an approximate homography relationship. The standard

CDVS pipeline might declare a non-match between Ia and Ib
because of the perspective transformation. Once the homog-

raphy Hab is estimated by DLT, the image Ia′ is obtained as

I
′

a = HabIa. In other words, we now have a new pair of

images, I
′

a
and Ib, where the perspective distortion has been

removed or at least strongly attenuated. It is therefore reason-

able to assume that, while CDVS might wrongly declare Ia
and Ib as a non-match, it can be likely to correctly declare I

′

a

and Ib as a match. Thus I
′

a and Ib are set as the new pair to

be checked as matching or non-matching by CDVS.

Fig. 4. Improvement on the numbers of features.

More in detail, the pipeline of our proposed method is

displayed in Figure 3. From the pipeline, we can see that our

proposed stage is integrated into the standardized CDVS vi-

sual search system. This guarantees to exploit CDVS’s high

efficiency and accuracy. The area inside the dotted rectan-

gle is our proposed stage. It includes homography estimation,

back-projection and re-matching of an image pair after com-

pensating for perspective distortion.

In particular, the re-matching process is triggered only if

the matching score does not exceed the threshold. That is,

if CDVS believes the images are matched, we trust this as it

is likely that the images had small perspective distortion. In-

stead, if CDVS decided that the image pair does not match, we

perform back-projection and re-matching to see if a transfor-

mation can be found, which will estimate and correct the per-

spective distortion leading to a positive match. In particular,



the re-matching stage checks whether more than 4 matched

corresponding pairs are available. If this is the case, a ho-

mography matrix is estimated and back-projection is used to

remove the perspective distortion between the images. Thus,

the image pair without perspective distortion will have more

matched features. However, it is not guaranteed that matched

features are truly matched or the positions of the matched fea-

tures are exact. The back-projection based on non accurately

estimated homography cannot help to decrease the perspec-

tive distortion. In the pipeline, to make sure that the perspec-

tive distortion of back-projected image is not worse than the

initial one, the score after the re-matching stage is compared

with the initial score. If the score has not been improved, the

initial matching score and the related matching decision will

be preserved.

To understand the re-matching process, note that, as Fig-

ure 4 displays, after reducing the perspective distortion, there

will normally be an increase of the number of matched fea-

tures. If the increased score exceeds the threshold after the

back-projection, then the previous non-match will be turned

into a correct match. In Figure 4, a and b are the initial im-

ages. Due to the perspective distortion, the number of the

matched features is around 15. c is the image after reduc-

ing the perspective distortion from b. The matched features

between a and c are around 125. It is a great increase of

the numbers of matched features, which can lead to a cor-

rect match, while the two initial images would not have been

matched.

4. EXPERIMENTS AND RESULTS

Our proposal has been integrated into the CDVS test mod-

el. Experiments are conducted employing the MPEG dataset

used in the evaluation of CDVS. In the dataset, there are 5 im-

age categories. Additionally, Category 1 has 3 sub-categories.

These dataset are defined as follows.

1.a Mixed text and graphics

1.b Mixed text and graphics at VGA resolution

1.c Mixed text and graphics at VGA resolution with heavy

JPEG compression

2 Paintings

3 Video frames

4 Buildings and landmarks

5 Common objects

Totally, there are 33590 images in the dataset.

The experiment for evaluating the performance of the pro-

posed scheme is designed as follows. In each category, o-

riginal CDVS and our integrated back-projection CDVS are

tested calculating both matching precision and non-matching

precision. Our experiment has been run on all categories. As

expected, the proposed back-projection method is more effi-

cient in the categories of objects where the planar assumption

is reasonable, although no performance decrease is observed

in the other categories, leading to an overall improvement.
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Fig. 5. Proposed method precision evaluation, (a)prints;

(b)dvds.

Figure 5 shows some result on the matching precision, in

particular (a) displays the result in print and (b) displays the

result in dvds. The red line represents the precision of the pro-

posed back-projection method and the green one represents

the precision of original CDVS, and it can be seen that the

proposed algorithm consistently outperforms CDVS. The re-

sult are further analyzed in Table 1, including planar objects

at original resolution, at VGA resolution and at VGA reso-

lution with heavy JPEG compression, buildings, landmark-

s and video frames. In the table, MP is short for match-

ing pairs precision and NMP is short for non-matching pairs

precision. Generally speaking, our proposed back-projection

method can improve the matching precision. However, the

improvement varies among categories and resolutions. As

expected, the improvement on the 2D planar objects is more

obvious compared with buildings and landmarks. But even

on buildings and landmarks, our method can still improve the

matching precision. The average improvement on the build-

ings and landmarks is about 0.3% and the average improve-

ment on the 2D planar objects is 2.9%. JPEG compression

will not affect the improvement but resolution indeed has an



Books MP NMP CDs MP NMP Dvds MP NMP

CDVS 0.980 1.000 CDVS 0.900 1.000 CDVS 0.970 1.000

Proposed 0.990 1.000 Proposed 0.920 1.000 Proposed 0.975 1.000

Improvement 0.010 0.000 Improvement 0.020 0.000 Improvement 0.005 0.000

Books-vga CDs-vga Dvds-vga

CDVS 0.980 1.000 CDVS 0.921 1.000 CDVS 0.921 1.000

Proposed 0.985 1.000 Proposed 0.938 1.000 Proposed 0.938 1.000

Improvement 0.005 0.000 Improvement 0.017 0.000 Improvement 0.017 0.000

Books-vga-jpeg CDs-vga-jpeg Dvds-vga-jpeg

CDVS 0.983 1.000 CDVS 0.901 1.000 CDVS 0.976 1.000

Proposed 0.987 1.000 Proposed 0.918 1.000 Proposed 0.985 1.000

Improvement 0.004 0.000 Improvement 0.017 0.000 Improvement 0.009 0.000

Cards Print Video

CDVS 0.960 0.997 CDVS 0.872 1.000 CDVS 0.858 0.999

Proposed 0.965 0.997 Proposed 0.880 1.000 Proposed 0.838 0.999

Improvement 0.005 0.000 Improvement 0.008 0.000 Improvement 0.020 0.000

Cards-vga Print-vga Buildings-Stanford

CDVS 0.935 0.997 CDVS 0.848 1.000 CDVS 0.555 1.000

Proposed 0.952 0.997 Proposed 0.882 1.000 Proposed 0.561 1.000

Improvement 0.017 0.000 Improvement 0.034 0.000 Improvement 0.001 0.000

Table 1. Performance of the proposed technique on the image categories of the CDVS dataset.

effect. Typically, a image of higher resolution will gener-

ate more matched pairs of keypoints, but these matches are

not generally more correct than in a lower resolution image.

More incorrect matched keypoints do not contribute to a cor-

rect homography estimation, hence a higher image resolution

generally did not provide better results.

4.1. Conclusion

This paper proposes a new method based on the CDVS

pipeline, attempting to improve the matching precision of

images pairs taken at different viewpoints, which is known

to be a difficult case for SIFT descriptors. The method em-

ploys homographies, and is fully integrated into the CDVS

standard, its complexity is low and it can improve the match-

ing precision, especially on images of 2D planar objects. In

particular, performance improvement is up to 3% on those

image categories that satisfy the planar model, such as print

and CDs.
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