
A UNIFIED APPROACH TO NUMERICAL AUDITORY SCENE SYNTHESIS
USING LOUDSPEAKER ARRAYS

Joshua Atkins, Ismael Nawfal, Daniele Giacobello

Beats Electronics, LLC, 8600 Hayden Place, Culver City, CA 90232
{Josh.Atkins, Ismael.Nawfal, Daniele.Giacobello}@beatsbydre.com

ABSTRACT

In this work we address the problem of simulating the spatial and
timbral cues of a given sound event, or auditory scene, using an
array of loudspeakers. We first define the problem with a general
numerical framework that encompasses many known techniques
from physical acoustics, crosstalk cancellation, and acoustic control.
In contrast to many previous approaches, the system described in
this work is inherently broadband as it jointly designs a set of spatio-
temporal filters while allowing for constraints in other domains.
With this framework we show similarities and differences between
known techniques and suggest some new, unexplored methods. In
particular, we focus on perceptually motivated choices for the cost
function and regularization. These methods are then compared by
implementing the systems on a linear array of loudspeakers and eval-
uating the timbral and spatial qualities of the system using objective
metrics.

Index Terms— spatial audio, crosstalk cancellation, binaural
hearing, equivalent source method, mode-matching

1. INTRODUCTION

The control of the sound field produced from an array of loudspeak-
ers has many interesting applications in acoustics such as room cor-
rection, spatial sound reproduction, active noise control, assisted
reverberation, quiet zone generation, and focused sound reproduc-
tion [1]. While seemingly different problems, many of these dis-
parate goals are tackled in the literature by solving a similar type of
numerical optimization problem. The conventional techniques aim
to generate a set of filters for each loudspeaker in an array by mini-
mizing the `2-norm of the error between the reproduced field and a
target response at one or more listening positions. Many times this
is done in a narrow-band sense, focusing on a single frequency and
the generation of a broadband filter is left as a separate optimization
problem.

The literature on the spatial audio reproduction problem is di-
vided into four areas: attempts at accurate reproduction of a wave-
field (e.g., wave-field synthesis (WFS) [2] or near-field compensated
higher-order ambisonics (NFC-HOA) [3]), attempts at accurate bin-
aural reproduction at a particular listening position (e.g., crosstalk
cancellation [4] or loudspeaker-binaural rendering [5]), attempts to
reproduce the perceptual attributes of a sound field using heuristic
approaches (e.g., vector-base amplitude panning (VBAP) [6]), and
numerical approaches to reconstructing a sound-field (e.g., mode-
matching for HOA [7] and the equivalent source method (ESM) [8]).

While the WFS and HOA approaches can accurately reproduce
a wave-field up to a spatial aliasing frequency in a specific region
in space using analytic solutions to the wave equation, they are lim-

ited in usefulness due to strict constraints on both loudspeaker lo-
cations and the region in which the wave-field is accurately repro-
duced [9]. In contrast, numerical approaches allow flexibility in both
the loudspeaker location and reproduction region while also support-
ing flexible models of acoustical propagation between loudspeakers
and intended listening locations [1]. The mode-matching approach
for HOA reproduction is a numerical framework that allows for flex-
ible loudspeaker layouts by minimizing error in the wavenumber-
domain [7]. Similarly, the WFS analog for numerical reproduction,
formulated by discretizing the Kirchhoff-Helmholtz integral in the
spatial domain, is formulated in the ESM problem [1, 8]. While not
explicitly viewed as the same problem in the past, crosstalk cancel-
lation and numerical sound field control share the same framework,
differing only in their models of acoustical propagation and target.

In this paper we provide a unified numerical framework for
recreating the spatial and timbral characteristics of a virtual auditory
scene for one or more human listeners given an array of loudspeak-
ers. We define this problem as numerical auditory scene synthesis
(NASS) to differentiate the approach from sound field synthesis
where the goal is exact reproduction of a physical wave-field in a
spatial region. The differences are subtle in some cases, but the
NASS viewpoint allows for the incorporation of perceptual con-
siderations in the evaluation and generation of the auditory scene,
a necessity when the number or position of loudspeakers does not
meet strict requirements necessary for non-numerical approaches.
The NASS approach here allows for clear links between many
disparate areas of spatial audio reproduction and leads to relevant
solutions that have been unexplored in the past. While the most
generic NASS optimization problem would incorporate a model of
both the peripheral and central auditory system [10], we focus this
work on convex constraints and cost functions that are known to
have unique solutions leading to feasible systems. The goal is then
to find objective criteria that fit within this mathematical framework
yet map well to perceptual features like localization, loudness, tim-
bre, and spatial extent. In contrast to much of the previous work
in sound-field reproduction, we consider the design in a broadband
sense and jointly design a set of spatio-temporal filters while still
allowing for constraints in other domains.

In Section 2, we review various models of acoustical propaga-
tion. The unifying numerical method, which allows for flexible con-
straints and arbitrary spatio-temporal transforms, is then presented
in Section 3. In Section 4, we consider the perceptual and acous-
tical implications of various spatio-temporal transforms. In Section
5, we present a case study to provide a proof of concept of the flex-
ibility of the framework presented. In particular, we use different
extensions of the NASS framework to render a source using a few
common loudspeaker arrangements.



2. MODELS OF ACOUSTICAL PROPAGATION

In this work, we consider the model of acoustical propagation ab-
stractly; the model can be an analytic one such as a plane-wave,
spherical-wave, or multi-pole source, a measured anechoic head-
related impulse response (HRIR), a measured HRIR in a room (i.e.
a binaural room impulse response (BRIR)), a measured loudspeaker
response in a room or anechoic setting or any other measured acous-
tic impulse response.

In the analytic cases we can evaluate solutions to the acoustic
wave equation under specific boundary conditions [11]. For a plane-
wave source in an anechoic setting (free-field), the response at any
point in space can be described by

G(f) = Aei(k·r−ωt) F−1

−→ g(t) = Aδ
(n · r

c
− t
)
, (1)

where k = ω
c

is the wavenumber, k = kn is the wavenumber vector
with unit vector n pointing in the direction of propagation, c is the
speed of sound in the medium (approx. 343 m/s in air), ω = 2πf
is the frequency (f is in Hertz), i is the imaginary number, r is the
vector pointing from the origin to the evaluation point, δ(·) is the
Dirac delta function, and F−1 represents the inverse Fourier trans-
form. For a monopole source in an anechoic setting (free-field), the
response at any point in space is described by a spherically spreading
wave

G(f) =
Aei(kr−ωt)
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A

r
δ
(r
c
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)
, (2)

where r = |r−r′| is the distance from source to evaluation point and
r′ is the vector pointing from the origin to the source location. More
general spatial responses can be described by a multi-pole source,
described in free-field as as sum of spatially distributed monopole
sources.

In practice, these impulse responses are sampled at discrete time
steps, n, and thus can have delays that are fractions of a given sample
rate [12]. In the case of HRIRs, BRIRs, and other measured impulse
responses, we can simply refer to the measured response as g =
[g[n], . . . , g[n+Ng − 1]] where Ng is the length of the measured
impulse response.

Taking the impulse response from a source s to a location m as
gms, we can write the signal at point m, ym[n], as generated from a
set of S sources, xs[n], as

ym[n] =

S∑
s=1

Ng−1∑
k=1

gms[k]xs[n− k]. (3)

In matrix form, this can be written as

y = Gx, (4)

where

G =

 G11 · · · G1S

...
. . .

...
GM1 · · · GMS

 ,x =

 x1

...
xS

 ,y =

 y1

...
yM

 .
The channel matrix G is composed of matrices Gms, each repre-
senting the (Ng+Nx−1)×Nx dimensional acyclic convolution ma-
trix of an individual source-to-receiver impulse response gms. Each
loudspeaker signal is xs = [xs[n], . . . , xs[n− (Nx − 1)]]T .

To simplify the notation, we assume the filters of each set to
be of same length, Nxs = Nx, Ngms = Ng , ∀m, ∀s. However,
the same results and conclusions in the next section apply to sets of
filters of nonuniform length.

3. OPTIMIZATION FRAMEWORK

In the reminder of the paper, without loss of generality, we consider
reproducing only one spatial source v[n] through the S loudspeaker
set. We represent the desired sound field at the m-th point as ȳm =
Tmv, where Tm is the (Nt + Nv − 1) × Nv acyclic convolution
matrix of tm ∈ RNt and tm is the so-called target response designed
according to the application. We can then consider a set of S filters
used to equalize the single spatial source in each loudspeaker xs =
Hsv, where Hs is the (Nh + Nv − 1) × Nv acyclic convolution
matrix of hs ∈ RNh . If we consider the propagation model in (4),
we can rewrite the reproduced and desired signal, respectively, as

y = G

 H1v
...

HSv

 and ȳ =

 T1v
...

TMv

 .
Thus, given our goal is to match desired and reproduced signals

at the target points, i.e., ŷ ≈ y. We can rewrite our problem as T ≈
GH. Given the particular structure of the convolution matrices, the
problem becomes

Gh ≈ t. (5)
We can now consider the optimization problem associated with find-
ing a set of S filters, hs ∈ RNh , from a set of observedMS acoustic
path models, gms ∈ RNg , so that the reproduction error of the tar-
get function at each measurement point, tm ∈ RNt , is minimized;
Nt = Ng+Nh−1 is used to ensure the linearity of the convolution.

An exact solution to (5) can be found in the case S = 2M ,
assuming Nt = 2Nh − 1, as is noted in the MINT method [13].
That is the case of G being a square matrix and thus the system
having a unique solution, provided that G is full rank.

Minimum norm solutions are always possible when SNh ≥
MNt and the matrix has full row rank, a condition that can be as-
sumed for the convolution matrices considered here. In this case,
the system (5) is said to be underdetermined and thus has infinitely
many solutions, so we seek a particular solution that minimizes the
`p-norm of the solution vector. The optimization problem becomes

ĥ = argmin
h
‖Γh‖q s. t. Gh = t, (6)

where Γ is an optional spatio-temporal transform and ‖·‖q is defined
as ‖x‖q = (

∑N
n=1 |x(n)|

q)
1
q and represents the `q-norm.

Exploring the neighborhood of the minimum norm solution (6)
by relaxing the constraint Gh = t and determining an approximate
solution is of general interest since perfect multichannel inversion
is difficult to achieve when spatial robustness and possible perturba-
tions of the measurement are considered [14]. This is also the case
when SNh < MNt, i.e. the system is overdetermined, and the con-
dition Gh = t cannot be fulfilled. In both cases the optimization
problem can be written as

ĥ = argmin
h
‖W(Gh− t)‖p s. t. ‖Γih‖qi ≤ γi,

∀i, i = 1 . . . , I
(7)

where the matrices Γi and W represent linear projections, or trans-
formations in a given domain, the implications of which will be dis-
cussed in the next section.

4. SPATIO-TEMPORAL TRANSFORMS

We consider here the options for spatio-temporal transforms that can
be applied through W or Γ in (6) and (7) along with their acous-
tical and perceptual implications. Spatial transforms can include



spatial weighting or averaging, spatial interpolation or extrapolation,
wavenumber-domain transformations (e.g., spherical and cylindrical
harmonics), wavenumber-domain interpolation or extrapolation, and
wavenumber-domain weighting or averaging (some of which have
been explored before, e.g., [11]). Temporal transforms can include
the uniformly or non-uniformly spaced discrete Fourier transform
(DFT), filter banks (including the auditory filter bank), temporal av-
eraging or weighting, frequency averaging or weighting, and time or
frequency interpolation or extrapolation (some of which have been
explored before, e.g., [1]). Any transform choice can incorporate
multiple space and time transforms, but we will analyze each do-
main separately in the following discussion. Note that the transform
W can alter the rank and numerical tractability of the problem (7).

The transforms W and Γ operate on a set of time domain vec-
tors stacked in order of their respective spatial positions. Thus the
temporal only transforms, Wt and Γt, are block diagonal matrices

Wt =

 F1 0
. . .

0 FM

 ,Γti =

 F1 0
. . .

0 FS

 (8)

where, for ease of explanation, the temporal transform, F, is as-
sumed to be the same for each impulse response. The most obvious
choice of F is the uniformly spaced DFT matrix which allows for
operations in the frequency domain. A closely related choice is for
F to be a row vector containing the DFT corresponding to a single
frequency k, which can be used to set up a set of constraints for each
frequency, Γtk = fk. A simple frequency-dependent weighting can
be applied to the DFT matrix to incorporate the perceptual non-linear
frequency scaling, or an auditory filter bank can be applied instead
which would have a similar effect [15].

The spatial transforms take on a more complicated form. Given
some matrix Y which maps the spatial points (S or M depending
on the transform) to some new domain with C points, a transform
matrix, can be constructed as

Ws =

 y11I · · · y1MI
...

. . .
...

yC1I · · · yCMI

 ,Γsi =

 y11I · · · y1SI
...

. . .
...

yC1I · · · yCSI


where yij is the value of Y in the ith row and j th column and I is
the identity matrix of size Nt × Nt for Ws and Nh × Nh for Γsi.
Common choices for Y include the wavenumber-domain transforms
created by the discrete spherical harmonics transform or the discrete
cylindrical harmonics transform which can serve to distribute the
reproduction error away from the center of a loudspeaker array when
used in the cost function through W [9]. These transforms have the
requirement that the spatial points be located on the surface of a
sphere or cylinder, but appropriate radial variation can be included
by solving the appropriate exterior or interior problem [11].

5. EXPERIMENTAL ANALYSIS

It is clear now that the optimization framework presented in (7) al-
lows a great deal of flexibility in the design of the set of filters ĥ for
NASS. The many applications and interactions of each of the trans-
forms presented in Section 4 are too numerous to consider fully in
this work.

For experimental evaluation, we chose two case studies. In the
first study, we considered a spherical wave propagation model (2)
and we designed time domain filters while applying constraints in

the frequency domain using the uniformly spaced DFT, a simple case
of temporal transform. In the second study, instead of spherical wave
propagation, we used anechoic HRIR measurements for both the tar-
get and propagation model and we applied a non-uniformly spaced
DFT that allowed us to minimize the error in a more perceptually
relevant manner.

We considered the filter design problem in rendering a source
at a given angle using a uniform linear loudspeaker array (ULA)
with both 8 and 2 loudspeakers. We chose Ng = 8192, Nh =
1024, and Nt = Ng + Nh − 1 = 9215, as defined in Section
3. The target vectors were zero padded to guarantee causality [14]
as tm = [ 0, . . . , 0, tm[0], . . . , tm[Nt − D − 1] ]T , where D =
100 is the number of leading zeros. We estimated the set of filters
{h0 . . .hS−1} to render a plane-wave source arriving from 60◦ to
the listener’s left. The primary listening position was defined to be
2 m from the ULA and all evaluations were carried out with M =
2 points located at the left and right ears. The distance between
drivers in the ULA was 10 cm, which corresponds to a minimum
and maximum loudspeaker span of 3◦ and 20◦ for the 8 loudspeaker
case.

5.1. Case Study 1: The Effect of Constraint Norm

We focus our attention on the optimization problem assuming a
`2-norm criterion on the unweighted cost function and impose a
frequency domain constraint on the solution vector. While other
norms have been considered, especially `1-norm and `∞-norm to
minimize the frequency domain response error measure in other
applications [16], a thorough analysis of how these improve the
perceptual quality of the result has not been shown in the literature,
and we leave these cases open to further investigation. The problem
in (7) is then written as

ĥ = argmin
h
‖Gh− t‖2 s. t. ‖Γh‖q ≤ γ, (9)

where Γ is a block diagonal matrix composed of S DFT matrices as
defined in (8) and t =

[
tT1 , . . . , t

T
M

]T
.

The cases when q = 1, 2,∞ are of particular interest, espe-
cially given their physical meaning in the frequency domain. These
problems are convex and can be solved efficiently using, e.g., inte-
rior point methods [17]. Results for these three cases are plotted in
Figure 1. It is important to note the effect of ill-conditioning on the
solution in the unconstrained case (Figure 1a), where the filters ob-
tained are physically unfeasible, requiring a large boost at the lower
frequencies.

When the `2-norm is minimized, the overall energy of the filters
is constrained. Thus, the parameter γ as an important physical inter-
pretation representing the maximum square root of the energy that
can be output by the system, and thus γ =

√
Emax. In Figure 1c the

results for γ = 39 dB are shown. It is clear that the filters require
less total energy than the unconstrained solution (‖Γh‖1 = 67 dB
and ‖Γh‖∞ = 32 dB for this design).

While the `2-norm constrains the maximum energy flowing
through the system, the `∞-norm allows us to define the maximum
possible absolute value of the estimated filters in the frequency do-
main, which is particularly relevant when determining physically
meaningful solutions considering the loudspeaker output. This min-
imax type of solution engenders a relatively flat spectrum. In Figure
1d the results for γ = 6 dB are shown where it is clear that the
maximum output is limited to this threshold (‖Γh‖2 = 39 dB and
‖Γh‖1 = 77 dB).

The `1-norm is a powerful convex tool often associated with
minimizing the sparsity of a vector, i.e., the so-called `0-norm. This



(a)

unconstrained

(b)

`1-norm
γ = 65 db

(c)

`2-norm
γ = 39 db

(d)

`∞-norm
γ = 6 db

Fig. 1: Simulation results of a plane-wave source rendered at 60◦ using an S = 8 loudspeaker array with M = 2 (black dots) for different
values of of q and δ in (9). The wave field is plotted at 500 Hz and the response at the ears is plotted using a measured anechoic HRIR.

type of optimization is relevant if the constraint is applied in ei-
ther the time or frequency domain. In the time domain, we will
obtain filters that are sparser, and often shorter, allowing for compu-
tationally efficient NASS. In the frequency domain, the importance
of the sparse criterion is less obvious. When ‖Γh‖1 is minimized,
the number of active DFT bins is minimized across all loudspeakers
(i.e., the frequencies and the loudspeakers are considered jointly). In
Figure 1b, with γ = 65 dB we found a sparse solution where only
two loudspeakers were used to reproduce the field across most of the
mid-frequency bands and four loudspeakers for the low frequencies
(‖Γh‖2 = 39 dB and ‖Γh‖∞ = 34 dB). Notice that, if we operate
on a bin-by-bin basis with multiple constraints where each Γi is the
DFT row vector discussed in Section 4, the problem minimizes the
number of active loudspeakers at each frequency independently and
(9) becomes a generalization of [18].

5.2. Case Study 2: Perceptual Error

It is clear from Figure 1 that the spherical wave propagation model
can only match the target HRIR at the listening position well up to
1.1 kHz due to both spatial aliasing issues and the mismatch between
the analytic models and the real-world listening scenario. Given the
poor results, we modified the system in (9) by including two per-

ceptual alterations. First, the impulse responses of the propagation
model, G, and target functions, t, were changed to actual measured
HRIRs, guaranteeing a matching between the acoustic situation en-
countered by a listener in the reproduced sound field. Secondly, we
applied a weighting using a non-uniformly spaced DFT matrix (in-
stead of the uniformly spaced matrix in Section 5.1) with points lin-
early spaced along the equivalent rectangular bandwidth (ERB) scale
between 20 Hz and 20 kHz. The problem in (7) is then

ĥ = argmin
h
‖W(Gh− t)‖2 s. t. ‖Γh‖q ≤ γ, (10)

where both W and Γ are the ERB-spaced DFT matrix transforma-
tions.

Figure 2 shows three examples to outline the effects of these two
modifications. Figure 2a displays the unconstrained solution to (10)
with S = 8 loudspeakers to show that the use of both the HRIR
target and acoustic model in the underdetermined case leads to both
realizable filters and perfect reconstruction of the target HRIR at the
listening position. Figure 2b shows what happens with an uncon-
strained spherical wave propagation model with S = 2 loudspeakers
in the overdetermined case. It is clear from the response at the ears
that the system will have impaired timbral response in the 0.1-1 kHz
range. In this case only approximate solutions exist, so the effect of
the perceptual weighting becomes more important. Figure 2c shows



(a)

unconstrained
HRIR

(b)

unconstrained

(c)

`∞-norm
γ = 28 dB
HRIR
ERB-domain

Fig. 2: Simulation results of a plane-wave source rendered at 60◦ using (a) S = 8 with HRIR target an propagation model, (b) S = 2 with
spherical-wave propagation model, and (c) S = 2 with HRIR target and propagation model. The wave field is plotted at 500 Hz.

the result of solving (10) with γ = 28 dB (the same `∞-norm as
Figure 2b). It is clear that the final response at the ears of the listener
now matches the target response closely across the full bandwidth.

It is worth noting that all techniques shown in Figures 1 and 2
display minimal differences in the wave fields at the listening posi-
tion. However, the response at the ears highlights large predicted
perceived differences which match our informal listening experi-
ments, motivating the use of both broadband design and analysis
techniques when comparing spatial audio methods.

6. CONCLUSIONS

We have presented a unified framework to reproduce an auditory
scene through loudspeaker arrays. This framework allowed us to en-
compass several approaches well known in the literature and explore
new techniques in a systematic way including perceptually relevant
solutions. We focused on numerical methods for reproduction where
the `2-norm between desired and reproduced sound fields is mini-
mized. This problem, often ill-conditioned, was solved using differ-
ent types of regularization based on the `q-norm, with q = 1, 2,∞,
leading to solutions with different physical meanings. In particular,
when q = 1, we were able to find sparse solutions, effectively re-
ducing the number of active loudspeakers to reproduce a given field.
When q = 2 and q = ∞, we were able to reduce the maximum
energy flowing in the system and effectively bound the frequency
response of the generated filters, respectively. Two simple percep-
tually relevant modifications were highlighted as an example of the
flexibility of this framework: modification of the acoustic models
to use the HRIR and projection of the error and constraints into an
ERB-spaced frequency domain.
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