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ABSTRACT
A new method for solving the adaptive-group-testing prob-
lem is proposed. To solve the problem that the conventional
method for non-adaptive group testing by Boolean compres-
sive sensing needs a larger number of tests when the pool size
is not optimized, the proposed method controls the pool size
for each test. The control criterion is the expected information
gain that can be calculated from the ℓ0 norm of the estimated
solution. Experimental simulation indicates that the proposed
method outperforms the conventional method even when the
number of defective items is varied and the number of defec-
tive items is unknown.

Index Terms— adaptive group testing, compressive sens-
ing, information gain, entropy, sparse signal processing

1. INTRODUCTION

Group testing is the well-known problem that attempts to dis-
cover a sparse subset of defective items in a large set of items
by using a small number of tests. Each test consists of three
processing steps: (1) selecting items for a pool on the basis
of a certain method, (2) mixing the selected items into the
pool, and (3) observing a single Boolean result by testing the
pool. When the proportion of defective items is small, a small
number of the tests on the mixed pool is sufficient to detect
the defective items; that is, all the items need not be tested
directly. Group testing as a subject dates back to the work of
Dorfman [1] in 1943, during the Second World War. Dorfman
developed this approach in order to test soldiers’ blood for
syphilis. Group testing has applications such as blood screen-
ing, deoxyribonucleic acid (DNA) sequencing, and anomaly
detection in computer networks [2].

Traditionally, group testing has been regarded as a com-
binatorial problem. As for this problem, many researches
about the upper and lower bounds on the number of tests re-
quired to find all the defective items have been done. A set
of information-theoretic bounds for group testing with ran-
dom mixing was established by Malyutov [3, 4], Atia and
Saligrama [5], Sejdinovic and Johnson [6], and Aldridge et al.

[7]. In addition, several tractable approximation algorithms,
such as one based on belief propagation [6] and one based on
matching pursuit [8], have been proposed.

In recent years, group testing has drawn interest from the
active research area of compressive sensing. Compressive
sensing solves a kind of underdetermined linear equation,
namely, y = Ax, where x is an unknown high-dimensional
vector to be estimated, A is a given mixing matrix, and y
is a given low-dimensional observed vector. The problem
with compressive sensing is similar to that with group testing
from the viewpoint that both of them are underdetermined
problems such that an unknown high-dimensional vector is
decoded from an observed low-dimensional vector. How-
ever, while compressive sensing is defined in a real vector
space, group testing is defined in a Boolean vector space.
To improve the performance of group testing by using com-
pressive sensing, Malioutov and Malyutov [9] proposed a
method for converting group testing into compressive sensing
through linear-programming relaxation. As for this conver-
sion method, ℓ1 minimization imposes the sparsity constraint
to the solution and solves the uncertainty of the underde-
termined problem. It thus outperforms other conventional
methods (i.e., the method based on belief propagation [6], the
method based on matching pursuit [8], etc.). However, the
conventional method is defined in non-adaptive group test-
ing, which has the drawback that it cannot choose the pool for
each test based on observation data. In particular, the optimal
size of the pool depends on the number of defective items,
and the number of defective items is unknown; therefore, in
the case that Malioutov’s method is applied, a larger number
of tests is required when the pool size is not optimized.

To reduce the number of tests of Malioutov’s method, a
method for adaptive group testing is proposed here. The pro-
posed method controls the pool size for each test. The crite-
rion of the control is the expected information gain that can be
calculated from the ℓ0 norm of the estimated solution. Simu-
lation results indicate that the proposed method outperforms
the conventional method even under the condition that the
number of defective items is varied and the number of de-



fective items is unknown.

2. PROBLEM STATEMENT

To state the problem, first, the following notation is fixed. N
is the number of items, of which a subset of size K is defec-
tive. Defective items are called “positive”, and non-defective
items are called “negative”. xn = 1 indicates that the n-th
item is positive, and xn = 0 indicates that the n-th item is
negative. For convenience, x = [x1, x2, · · · , xN ]

T is writ-
ten. T tests, where T < N , are then performed. As explained
above, in each test, some items are selected from all the items,
and they are mixed into the same pool. This selection is de-
fined by a mixing matrix, A, which is a T ×N binary matrix.
The element of the t-th row and the n-th column of A is given
as atn, where at,n = 1 indicates that the n-th item is mixed
into the pool of the t-th test, and at,n = 0 indicates that the n-
th item is not mixed into the pool of the t-th test. The observed
signal of each test, t, is a single Boolean value, yt ∈ {0, 1}. yt
is obtained by taking the Boolean sum of {xn|atn = 1}. For
convenience, y = [y1, y2, · · · , yT ]T is written. The vector
notation

y = Ax (1)

is used in the following.
The problem of group testing is to estimate unknown vec-

tor x from given A and y. In addition, the noise of the obser-
vation is considered. The noise includes both the false pos-
itive and the false negative. The former represents the case
that yt = 1 even when the Boolean sum of {xn|atn = 1} is
0. The latter represents the case that yt = 0 even when the
Boolean sum of {xn|atn = 1} is 1. This observation with
noise is represented by

y = Ax⊗ v, (2)

where v is the Boolean vector of errors, and ⊗ means the
XOR operation.

A number of works have studied the design of A [2]. For
example, K-separating and K-disjunct are well-known prop-
erties of A. When these properties hold, x can be recovered
exactly. However, such design is often unsuitable for prac-
tical situations because it assumes that the exact number of
the positive items (K) before group testing. Moreover, if all
T tests cannot be carried out, the performance of the method
will not be guaranteed [7]. Therefore, in many works, A is
simply designed by the Bernoulli random design, where each
element of A is generated independently at random with a
probability p corresponding with the size of the pool. That is,
atn is 1 with probability p, and atn is 0 with probability 1−p.
Bernoulli random design is also used in this study.

One of the problems of non-adaptive group testing is that
optimal probability p largely depends on K, although the
number of positive items is unknown. The present study thus
focuses on adaptive group testing. In adaptive group testing,

the mixing vector of the next test after each observation is
determined as follows:

aT+1 =

 aT+1,1

...
aT+1,N

 = fT (A,y) , (3)

where fT is a function to determine the next mixing vector
after the T-th test. In addition, each test is assumed to have
a Bernoulli random design, and control of p is focused on.
Accordingly, (3) can be rewritten as

aT+1,n
i.i.d∼ pT+1 = gT (A,y) , (4)

where gT is a function to determine the next Bernoulli prob-
ability, pT+1, after the T-th test. In Section 4, a new gT is
proposed.

3. BOOLEAN COMPRESSIVE SENSING FOR
GROUP TESTING

3.1. Compressive sensing

Malioutov and Malyutov [9] proposed a conversion of group
testing into compressive sensing through a linear-programming
relaxation. This conventional method is the basis of our
method, which is explained in this section.

Many works on compressive sensing have been reported
[10]. In this study, a sparse signal, x ∈ RN , is assumed, and
it is estimated from M measurements y ∈ RT by using a ran-
dom measurement matrix A, where M < N . Compressive
sensing, namely, decoding x, uses the following ℓ0 minimiza-
tion:

min
x

|x|0 subject to y = Ax. (5)

However, Eq. (5) is a NP-hard problem, which cannot be
solved practically. Candes et al. [10] proved that if certain
conditions hold, x can be decoded exactly by the following
ℓ1 minimization:

min
x

|x|1 subject to y = Ax. (6)

Since ℓ1 minimization is a simple linear-programming prob-
lem, a number of practicable algorithms can be used to solve
it.

3.2. Noise-free case

Equation (1) is similar to constraint equation (6). However, it
is not a linear equation in a real vector space but a Boolean
equation. It is shown in [9] that (1) can be replaced with a
closely related linear formulation: 1 ≤ AIx, and 0 = AIx,
where I = {t|yt = 1} is the set of positive test results, and
J = {t|yt = 0} is the set of negative test results. A linear-
programming formulation similar to Eq. (6) is therefore given



as

min
x

{∑
n

xn

}
subject to 0 ≤ x ≤ 1,

AIx ≥ 1, AJx = 0 (7)

3.3. Noisy case

Because (7) does not model noisy cases, the performance of
the method is degraded in noisy cases. One version of [9]’s
method thus covers the noisy case by adding slack variables
as follows:

min
x,ξ

{∑
n

xn + α
∑
t

ξt

}
subject to 0 ≤ x ≤ 1, 0 ≤ ξI ≤ 1, 0 ≤ ξJ ,

AIx+ ξI ≥ 1, AJx = ξJ , (8)

where ξ = [ξ1, · · · , ξT ] is the vector composed of the slack
variables, and α is the regularization parameter that balances
the amount of noise and the sparsity of the solution.

4. PROPOSED METHOD

The proposed method for controlling Bernoulli probability p
in adaptive compressive sensing is described as follows. Ex-
pected information gain of the next (T + 1)-th test is intro-
duced as

IT+1(p) = qNIN + (1− qN )IP , (9)

where IT+1(p) is the expected information gain for Bernoulli
probability p, qN is the probability that the result of the (T +
1)-th test is negative, IN is the information gain of the neg-
ative test, and IP is the information gain of the positive test.
The negative test means that all the items of the pool are neg-
ative, so qN is given by

qN =

(
N − |x|0

G

)
(

N
G

) , (10)

where G is the size of the pool, namely, the number of the
non-zero elements of aT+1. The negative test gives the in-
formation that all the items of the pool are negative, so IN
is the sum of the current entropy of the G items of the pool;
therefore, IN is given by

IN = G {−r log r − (1− r) log(1− r)} , (11)

where r = |x|0 /N is the probability that each item is pos-
itive. The positive test gives the information that there is at
least one positive item in the pool; therefore, IP is given as

IP =
{
−rG log rG − (1− rG) log(1− rG)

}
, (12)

The estimate of x, x̂, is obtained by using T tests.
Using the ℓ0 norm of x̂, |x̂|0 makes it possible to optimize

p by maximizing IT+1(p) of (9). However, x̂ may include an
estimation error because x̂ is only a temporary result based
on a small number of tests. The control of p is degraded by
the estimation error; therefore, the objective function (9) is
revised in consideration of the estimation error as follows:

ĪT+1(p) =
∑

{K′|K′=|x̂|
0
−a+b}

IT+1(p)

×
(

K ′

a

)
ϵa(1− ϵ)K

′−a

×
(

N −K ′

b

)
ϵb(1− ϵ)N−K′−b, (13)

where ϵ is the probability of the estimation error, a is the num-
ber of the false-positive items, and b is the number of the false-
negative items. p can be optimized by maximizing (13).

The convergence of the above-described adaptation of the
case of no noise is discussed as follows. x̂T is defined as
the estimates of x by using T tests. x̂T+1 is defined as the
estimates of x by using (T +1) tests. x̂T is given by Eq. (7).
When the (T + 1)-th test is positive, x̂T+1 is given by

x̂T+1 = argmin
x

{∑
n

xn

}
subject to 0 ≤ x ≤ 1,

AIx ≥ 1, AJx = 0,

aT+1
Tx ≥ 1. (14)

Because (14) is (7) with an additional constraint, i.e., aT+1
T

x ≥ 1, |x̂T |0 ≤ |x̂T+1|0. By the additional constraint,
|x̂T+1|0 may increase from |x̂T |0 by no more than one. When
the (T + 1)-th test is negative, x̂T+1 is given by

x̂T+1 = argmin
x

{∑
n

xn

}
subject to 0 ≤ x ≤ 1,

AIx ≥ 1, AJx = 0,

aT+1
Tx = 0. (15)

|x̂T+1|0 does not increase from |x̂T |0 because |x̂T |0 has been
already minimized at the time of the T -th test. From the
above, |x̂T |0 ≤ |x̂T+1|0, and |x̂T |0 weakly monotonically
increases as T increases. In addition, it is obvious that |x̂|0 ≤
|x|0 because |x̂|0 is minimized under the constraints that also
holds for x, so |x|0 is an upperbound of |x̂T |0. Therefore,
|x̂T |0 moves to |x|0, and the adaptation of the pool size con-
verges as T increases.

5. EXPERIMENTAL RESULTS

The performance of the proposed method was evaluated by
simulation. In particular, the averaged probability of correct



estimation was computed over 100 trials as a function of T ,
for N = 150. N items were generated independently for
each trial. In this simulation, x̂ = x was considered to be
the correct case. The proposed method was compared with
the non-adaptive conventional method [9] . To evaluate the
robustness against the difference in the number of positive
items, K, the simulation was conducted for two cases: K =
2 and K = 6. Moreover, the optimal p for K = 2, i.e.,
p = 0.31, that for K = 4, i.e., p = 0.2, and that for K = 6,
i.e., p = 0.14, were calculated by simulation. As for the non-
adaptive conventional method, these two fixed optimal values
of p were used. As for the proposed method, aT of the T -th
row vector of A was computed by random design of Bernoulli
probability pT . The original version of the information gain,
(9), and the revised version, (13), were then compared.

First, the performance of the proposed method in the case
of no noise was computed. Figure 1 shows the probabil-
ity of exact recovery in the case of K = 2, and Figure 2
shows that in the case of K = 6. NON-ADAPT means the
non-adaptive conventional method [9], ADAPT means the
proposed method maximizing (9), and REVISED-ADAPT
means the proposed method maximizing (13). In both cases,
the proposed method, namely, ”REVISED-ADAPT”, is bet-
ter than the non-adaptive method in the worst cases, and the
performance of the proposed method is near the level of that
using the optimal pool size. These results indicate that the
proposed method can effectively control pool size. Figure 2
shows that the performance of the ADAPT is low. This result
indicates that ADAPT is degraded by the estimation error.

The performance of the proposed method in the noisy
case was simulated next. In the simulation, noise with i.i.d
5% probability of flipping each bit of y was added. Figure 3
shows the probability of exact recovery in the case of K = 2,
and Figure 4 shows that in the case of K = 6. NON-ADAPT
means the non-adaptive conventional method [9], ADAPT
means the proposed method maximizing (9), and REVISED-
ADAPT means the proposed method maximizing (13). Ac-
cording to these results, the proposed method (REVISED-
ADAPT) is better than the non-adaptive method in the worst
case, and the performance of the proposed method is near
the level of that using the optimal pool size. These results
indicate that the proposed method can effectively control the
pool size even under noisy conditions.
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Fig. 1. Probability of exact recovery in noiseless case as a
function of number of tests, T . N = 150, K = 2.
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Fig. 2. Probability of exact recovery in noiseless case as a
function of number of tests, T . N = 150, K = 6.
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Fig. 3. Probability of exact recovery in noisy case as a function
of number of tests, T . N = 150, K = 2, and 5% noise was
added.
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Fig. 4. Probability of exact recovery in noisy case as a function
of number of tests T . N = 150, K = 6, and 5% noise was
added.

6. CONCLUSION

A new method for solving the adaptive group-testing prob-
lem is proposed. The proposed method controls pool size
adaptively by using information gain calculated from the ℓ0
norm of the estimated solution. Moreover, to improve the ro-
bustness of group testing against estimation error, smoothing
of the information gain in consideration of the estimation er-
ror is applied. An experimental simulation showed that the
proposed method outperforms the conventional method even
when the number of defective items is varied and the number
of defective items is unknown.
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