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ABSTRACT
Two new radar signal models using nonlinear frequency mod-
ulation are proposed and investigated with respect to enhanc-
ing the target’s range estimation and reducing the sidelobe
level. The performance of the proposed signal models is com-
pared to the currently popular linear and nonlinear frequency
modulation signal models. The Cramer Rao Lower Bound
along with main lobe width and the peak to sidelobe ratio
are used for comparing the signal models to show that better
range accuracy and smaller sidelobes can be achieved with
the proposed signal models.

Index Terms— frequency modulation, NLFM, matched
filter, radar, CRLB, PSLR.

1. INTRODUCTION

Estimating the range and velocity of a moving target using
radar has been investigated for a long time but is still an active
research area. As targets get stealthier and harder to detect,
accurate estimates of the target parameters are increasingly
difficult to achieve. Options that can improve the accuracy of
the parameter estimates are thus important.

One of the crucial radar system components that directly
influences the accuracy of the target parameter estimates is the
signal model itself. Models can be broadly classified into Fre-
quency Modulation (FM) and Phase Modulation (PM). FM is
more widely used because of its ease of generation and effec-
tive bandwidth usage; it will be the focus of this paper.

The FM signal model for radar has a long history of use
and is discussed in detail in many texts [1, 2, 3, 4]. For ex-
ample, the Linear Frequency Modulated signal (LFM, also
known as chirp signal) introduced in 1940s remains the most
frequently used signal model in radar systems. In LFM the
signal’s frequency is varied linearly with time across the sig-
nal’s bandwidth. In this paper we generalize this signal model
to a broader class in which the frequency is increased mono-
tonically with time but not necessarily in linear form.

Generally the design of Nonlinear FM (NLFM) signals
starts by specifying a desired power spectral density (PSD)
(corresponding to the desired auto correlation (AC) function).
Then applying the principle of stationary phase (sections 3.2

and 3.3 in [5]), a nonlinear frequency/phase function is ob-
tained either by deriving the analytical solution or by using
iterative numerical methods. Cook [6] used this principle to
design NLFM signals which have PSDs with a raised cosine
shape. This signal model exhibited smaller sidelobes when
perfectly matched but resulted in higher sidelobes for even a
moderate shift in the Doppler frequency. Usually the enve-
lope of the signal is kept constant so that the power amplifiers
in the transmitter can operate at their maximum efficiency.
The hybrid-FM model, which has better Doppler tolerance, is
discussed in [7], but the designed signal does not have a con-
stant envelope thus resulting in SNR loss and widening of the
AC main lobe in the receiver. Levanon and Mozeson discuss
an empirically derived NLFM model (equation (5.20) in sec-
tion 5.2 of [1], hereafter referred as NLFM-LM) which has
good peak to sidelobe ratio (PSLR) performance. Many sub-
sequent papers followed a similar strategy of starting from the
required PSD and applying the constant envelope constraint
to obtain the radar signal. For instance work in [8] analyzes
many PSDs having the form of popular window functions and
compares the PSLR and main lobe width, while [9] proposes
a signal model that has similar instantaneous frequency char-
acteristics resembling that of [6] but can achieve smaller side-
lobe levels by extending the tail of the spectrum beyond the
allowed bandwidth range. Many other PSDs have been pro-
posed in [10] and [11] using the same design principle of [6]
to obtain the phase function. A similar design method is used
even when the available spectrum is not continuous [12, 13].

In this paper we present two parametrized NLFM signal
models and assess the effect the parameters have on perfor-
mance. The variance lower bound of the range estimate is
inversely proportional to the second derivative of the ambi-
guity function (AF) (section 10.2.1, of [2]). With the signal
buried in additive white Gaussian noise (AWGN), the vari-
ance lower bound is inversely proportional to the square of
the first derivative of the signal (see section 3.1). The proper
signal parameter choice can achieve larger first derivative thus
reducing the variance lower bound on the range estimate.

In contrast to the range estimate (which depends on mod-
ulation type and bandwidth), the target’s velocity estimate de-
pends on the signal’s duration (Chapter 10, Example 4 in [2])
and the carrier frequency (since larger carrier frequency re-
sults in larger Doppler shift). Yet the delay-Doppler coupling



of the AF can make the velocity and range errors correlated.
AF analysis for the delay-Doppler coupling is not presented
in this paper and is being carried out as a future work.

This paper is organized as follows. The signal models
are discussed in section 2. We will concentrate only on the
baseband version of the signal models as the frequency varies
from 0 to B Hz. This can easily be generalized to the higher
frequencies through modulation. Since our design approach
focuses on reducing the lower bound of the range estimate, we
present the comparison of Cramer Rao Lower Bound (CRLB)
for various values of the nonlinearity parameter in section
3.1. Then we present the trade-off between achieving ac-
curate range estimate (by reducing the AC main lobe width)
versus achieving high PSLR in section 3.2. Simulation results
presented in section 4 demonstrate the potential for improved
performance with the new signal models. Finally we summa-
rize our work in section 5.

2. SIGNAL MODELS

In the LFM signal model the frequency is linearly swept from
0 to B Hz. In this section we will consider a broader class
of signals whose instantaneous frequency f(t) monotonically
increases from 0 to B Hz in a more general way as time goes
from 0 to T seconds. The expression for the corresponding
signal can be written as

s(t) = sin(φ(t)) (1)

where

φ(t) = 2π

∫ t

0

f(λ)dλ. (2)

2.1. Signal Model 1: Time Exponentiated Frequency
Modulation (TEFM)

One way to monotonically increase the frequency is through
the following expression:

f(t) = B

(
t

T

)α−1

. (3)

The corresponding signal expression obtained by substituting
(3) in (1) and (2) is

s(t) = sin

(
2π B

tα

αTα−1

)
. (4)

The parameter α controls the frequency evolution with re-
spect to time. Choosing α = 2 corresponds to the LFM. Fig-
ure 1 shows the frequency function f(t) with respect to time
for various values of α. It can be observed that for α = 2, f(t)
reaches B/2 (50% of bandwidth) exactly at time T/2. When
1 < α < 2, f(t) crossesB/2 earlier than T/2, spending more
time in the higher frequencies. Since f(t) varies slowly in this
frequency region, its time derivative is smaller. According to

the stationary phase principle, this results in larger energy in
the corresponding higher frequency region. For α > 2, f(t)
spends more time in the lower frequencies (less than B/2)
most of the time, emphasizing the lower frequencies.

Plots in the left column of Fig. 2 show the energy dis-
tribution for different values of α. One can observe that for
α = 1.5, the higher frequency region (around B/2 to B Hz)
is emphasized and for α = 5, the lower frequency region is
emphasized (< B/2). For α = 2, the energy is spread almost
equally in the entire region. This matches with the predic-
tion noted earlier. We will refer to this model as Time Ex-
ponentiated Frequency Modulation (TEFM) in the following
sections.
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Fig. 1. Frequency vs Time of eqn (3), (5) for various α and β.
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Fig. 2. Energy distribution for various α of (3), and β of (5).

2.2. Signal Model 2: Sine Exponentiated Frequency
Modulation (SEFM)

One other way of changing the frequency with respect time
is with a sinusoidal function. A general expression for the
frequency as a function of time is

f(t) = B sinβ
(
π t

2T

)
. (5)

The expression for the corresponding signal is

s(t) = sin

[
2π B

∫ t

0

sinβ
(
π λ

2T

)
dλ

]
. (6)

In this case β controls the energy distribution in the fre-
quency domain. For fractional values of β it is not possible to
get the closed form expression and hence the phase has to be
computed using numerical integration methods.



Also shown in Fig. 1 is the frequency evolution for this
signal model for various values of β. For 0 < β < 2, f(t)
spends more time on the higher side of B/2, emphasizing the
higher frequencies. But the β = 2 curve spends more time in
the very low and very high bandwidth regions compared to the
mid-bandwidth region, emphasizing the flanks of the allowed
bandwidth. Finally, β > 2 tend to concentrate more energy in
the lower frequencies, by spending more time in that region.

This can be observed in the figures on the right column of
Fig. 2. For β = 1, the emphasis is on the higher frequency
side (> B/2) and for β = 5, the emphasis is on the lower fre-
quency side (< B/2). But for β = 2, energy is spread almost
evenly over the middle part of the frequency region with more
emphasis on the lower and higher side of the bandwidth. We
will refer this model as Sine Exponentiated Frequency Mod-
ulation (SEFM).

3. PERFORMANCE COMPARISON OF THE SIGNAL
MODELS

Here we assess the impact of α and β on the signal models’
ability for accurate range estimation and smaller sidelobes us-
ing the CRLB and the shape of AC. We compare the perfor-
mance to LFM and NLFM-LM of [1] (with BL = 2B and
BC = 0.1B, where B is the given bandwidth). The parame-
ters of NLFM-LM are chosen such that the bandwidth is com-
parable with that of the proposed signal models.

3.1. Variance of Range Estimation

Local accuracy of the target parameters is analyzed by relat-
ing the Fisher Information Matrix (FIM) to the AF in section
10.2.1 of [2]. Hence FIM can be used for choosing α and β
for which the CRLB is small. In this section we derive the
FIM with respect to round trip delay time and Doppler fre-
quency for the proposed signal models. Since the resulting
FIM is ill-conditioned, the reciprocal of the corresponding di-
agonal elements of FIM is used for CRLB [14, 15]. To do this
we compute the CRLB for both the proposed signal models
in AWGN for various α and β. Since we are just interested
in the relative CRLB, we normalize with the CRLB of LFM
(TEFM with α = 2).

If s(t) = sin(φ(t)+2π fct), 0 ≤ t ≤ T, is the transmit-
ted signal, the reflected signal is of the form

rs(t) = sin(φ(t− τ) + 2π (fc + fd) (t− τ)), (7)

where φ(t) is the phase of the signal defined in equations (4)
and (6). fc is the carrier frequency and fd is the Doppler
frequency shift caused by the moving target. The parameter
τ is called the round trip delay time and depends on the target
range (R) as τ = 2R

c . The transmitted signal pulse duration
is T and the total time is To = T + τmax where τmax is the
maximum time delay.

The discrete version of the received signal is

r(n;n0) =

 w(n) 0 ≤ n < n0

rs(n;n0) + w(n) n0 ≤ n < n0 +M
w(n) n0 +M ≤ n ≤ L− 1

where w(n) is assumed to be AWGN with variance σ2,
rs(n;n0) = sin(φ(n∆ − n0∆) + 2π (fc + fd)(n − n0)∆),
∆ is the sampling interval and n0 = τ/∆, M = T/∆,
L = To/∆. With this formulation, the CRLB of n0 (discrete
time version of τ ) is (section 3.5 in [16])

var(n̂0) ≥ σ2∑L−1
n=0

(
∂ rs(n;n0)
∂ n0

)2 . (8)

For TEFM, the variance lower bound can be shown to be

var(n̂0) ≥ σ2

(2π B∆)2
∑M−1
n=0

(
n∆
T

)2(α−1)
cos2(φr(n∆))

(9)
and for SEFM the lower bound is given by

var(n̂0) ≥ σ2

(2π B∆)2
∑M−1
n=0 sin2β

(
π n∆
2T

)
cos2(φr(n∆))

(10)
where φr(n∆) = φ(n∆)+2π (fc+fd)(n−n0)∆ and φ(t) is
given by the phase arguments in (4) and (6). Figure 3 shows
the CRLB as a function of α and β for both the signal models.
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Fig. 3. CRLB comparison for both the signal models.

One can observe that the CRLB increases generally with
α and β. Hence having smaller α and β improves perfor-
mance by reducing the variance lower bound of the τ estimate
(and hence the target’s range estimate). On other hand, CRLB
for the Doppler estimate for both the signal models is

var(f̂d) ≥
σ2

(2π∆)2
∑M−1
n=0 n2 cos2(φr(n∆))

. (11)

In this case, the nonlinearity parameters α or β affect the
summation only via the phase term which is approximately
1
2

∑M−1
n=0 n2. Hence the variance lower bound for Doppler is

not affected by the signal model.
For TEFM, the minimum value for α is 1. In this case, the

entire signal energy is concentrated at a single frequency B



Hz. Though this produces the lowest variance bound for the
range estimate, this may not be an ideal choice. For example
transmitting a sinusoid with high energy can easily expose the
radar’s location to the adversary. Also the matched filter will
have large sidelobes. Similar behavior can be expected for
SEFM, as β is set to its minimum value 0.

3.2. Autocorrelation for Matched Filter

The most commonly used target parameter estimator in radar
system is the matched filter (MF). In MF the reflected signal
is correlated with the transmitted signal and the round trip de-
lay time (τ ) is given by the peak of the correlation function.
Hence it is useful comparing the correlation function of these
signal models to observe the main lobe width and the side-
lobe levels. A narrow main lobe in the AC can be associated
with an accurate range estimate of the target. It also helps in
resolving two closely placed targets. Furthermore it is desir-
able to have smaller sidelobes. Otherwise the sidelobes from
a larger target can mask the main lobe of a smaller target.

The AC is defined as

R(ν) =

∫ T

−T
s(t) s∗(t+ ν) dν. (12)

We show the comparison of the 3-dB main lobe width for the
both signal models for various values of the nonlinearity pa-
rameters α and β in Fig. 4. The main lobe (ML) widths are
normalized with respect to the LFM’s ML width (marked with
black dot in the figure) for easy comparison. For TEFM mod-
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Fig. 4. 3-dB Normalized Main-lobe width.

els, the ML width is smaller compared to LFM for 1 < α < 2
and increases for α > 2. This matches with what we observed
with CRLB. We can also observe that ML width of TEFM is
less than that of NLFM-LM for α < 1.8. In CRLB plot we
observe that for SEFM, variance lower bound on range esti-
mate becomes worse than that of LFM beyond β > 2.5. But
with matched filter estimator, AC is more resilient for SEFM
and the ML width approaches to LFM’s only when β > 4.
Also we can observe that the ML width of SEFM is less than
that of NLFM-LM for β < 2.3.

The next important parameter of the AC is the PSLR,
which gives a measure of sidelobe level with respect to main

lobe level. It is defined as

PSLR =

∣∣∣∣ R(0)

max(R(τ))

∣∣∣∣ , 0 < τ < T. (13)

In Fig. 5, we plot the normalized PSLR (with respect to
LFM’s PSLR) for both the signal models for various val-
ues of α and β. As can be observed, for 1 < α < 2 in
TEFM, the PSLR values are small compared to LFM, mean-
ing that sidelobes are larger compared to LFM. As α > 2,
the PSLR values become higher (indicating smaller side-
lobes) and reach their maximum around α = 2.6. Even
after α = 2.6 though sidelobe levels increase, they are still
smaller than that of LFM. Also TEFM is able to achieve
higher PSLR (smaller sidelobes) compared to NLFM-LM for
α > 2. SEFM achieves higher PSLR than LFM for β > 1.6
and compared to NLFM-LM, SEFM achieves higher PSLR
for β > 1.8.
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In summary, with respect to LFM, TEFM model can have
either narrower ML for α < 2 or smaller sidelobes for α > 2.
But SEFM achieves narrower ML for 0 < β < 4 and also can
achieve smaller sidelobes for β > 1.6 compared to LFM.

3.3. Inference from the comparison metrics

For SEFM the reasonable operating region is between 1.6 <
β < 2.5 where the signal model achieves smaller variance
and higher PSLR compared to LFM. Beyond this interval,
the CRLB gets bigger than that of LFM and for β > 4 the
peak sidelobe level for SEFM gets closer to that of LFM. But
with TEFM signal model the designer has to choose between
smaller ML width on the range estimate for 1 < α < 2 and
higher PSLR for α > 2. Though it may seem like a weak-
ness for TEFM, for the applications where higher PSLR is re-
quired (such as dense targets scenario), TEFM with α around
2.6 would be a superior choice.

4. SIMULATION RESULTS

In this section we present the variance of target’s range com-
puted from Monte Carlo simulation. For the simulation a tar-
get is assumed to be at the range of 100 km. The reflected



signal is modeled as given in eqn (7). The target range is
computed from the round trip delay time of the reflected sig-
nal. The round trip delay is given by the delay corresponding
to the maximum of the AC main lobe. Monte-carlo simula-
tion is carried out for 1000 iterations for various SNR values
with the signal parameters of bandwidth B = 2 × 106 Hz
and the signal time duration of T = 10 × 10−6 seconds. The
variance of the range estimate computed from the simulations
using the different signal models for a range of SNR values is
presented in Table 1.

Table 1. Variance of range estimate
SNR LFM TEFM(α = 1.5) SEFM(β = 1.7)

(in dB) Var Var Var
0 0.0058 0.0026 0.0042

-2.0 0.0080 0.0047 0.0070
-4.0 0.0118 0.0073 0.0096
-6.0 0.0166 0.0111 0.0133
-8.0 0.0277 0.0175 0.0214

-10.0 0.0418 0.0237 0.0307
-12.0 0.0663 0.0402 0.0497
-14.0 0.1054 0.0583 0.0661
-16.0 0.1636 0.0897 0.0927
-18.0 0.2690 0.1507 0.1795

We can observe that as the SNR decreases, the variance of
the range estimate increases. However in all cases the LFM
has larger variance compared to the other two cases. The or-
der of the variance is as follows.

V ar(LFM) > V ar(β = 1.7) > V ar(α = 1.5). (14)

This agrees with our deduction from section 3 that a small
ML width make the range estimate accurate.

5. CONCLUSION

In this paper we have proposed general form for two nonlin-
ear signal models (TEFM and SEFM). We analyzed energy
distribution in the frequency domain. Then we presented the
CRLB and PSLR performance for both the signal models.
From the performance metrics we observed that the TEFM
achieves smaller range variance for 1 < α < 2 and larger
PSLR for α > 2. And SEFM achieves both smaller range
variance and higher PSLR for 1.6 < β < 2.5. Finally we
confirmed through Monte Carlo simulation that smaller range
variance can be attained by proper selection of α and β for
both the signal models.
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