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ABSTRACT
In order to quickly curb infections or prevent spreading of ru-
mors, first the source of diffusion needs to be localized. We
analyze the problem of source localization, based on infec-
tion times of a subset of nodes in incompletely observed tree
networks, under a simple propagation model. Our scenario
reflects the assumption that having access to all the nodes and
full network topology is often not feasible. We evaluate the
number of possible topologies that are consistent with the ob-
served incomplete tree. We provide a sufficient condition for
the selection of observed nodes, such that correct localization
is possible, i.e. the network is observable. Finally, we formu-
late the source localization problem under these assumptions
as a binary linear integer program. We then provide a small
simulation example to illustrate the effect of the number of
observed nodes on the problem complexity and on the num-
ber of possible solutions for the source.

Index Terms— Network observability, source localiza-
tion, tree graphs, missing edges

1. INTRODUCTION

Many different phenomena, such as the dissemination of in-
formation in social networks and spreading of infectious dis-
eases in networks are modeled as diffusion over a network
of nodes. Localizing the source of diffusion becomes crucial
for damage control and prevention of further infection, or for
identifying the perpetrators who spread rumors and even for
identifying influential individuals who start certain trends.

The issue of the origin of the diffusion was first addressed
in [1], where based on a metric called rumor centrality, the
rumor source is estimated by observing which nodes got in-
fected. In [2], assuming that not only the state of the nodes
is known, but also infection times, an optimal estimator for
trees, and suboptimal for general networks, is proposed.
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Since in most real world networks it is unfeasible to monitor
all nodes, estimation is based only on a subset of nodes, called
observer nodes and several strategies for the selection of these
nodes are experimentally evaluated. A sufficient condition
for source localization based on the choice of observers, un-
der the assumption of deterministic propagation is provided
in [3]. The work of [1] is extended in [4], from the case of
single source to the case of unknown number of sources.

As the network data is often incompletely known due to
the fact that individuals are not always willing to share all
the information about their social connections or information
is exchanged through other means than observed social net-
work sites, another active area of research in network dif-
fusion deals with inference of the underlying network over
which the propagation takes place. Given the times when
nodes became infected, [5] proposes a near-optimal network.
Assuming a part of the network topology is known, inference
of the missing edges and nodes is tackled in [6].

We address the issues of localizing the source of diffusion
and network observability, assuming not only that the infec-
tion times of all the nodes are not available, but also that the
network topology is not fully known. However, estimating
the source of diffusion or achieving network observability in
general networks, even when the topology is fully known, is
very challenging [1–3]. Therefore, here we assume a simpli-
fied deterministic noiseless propagation scenario and analyze
tree topologies, in order to theoretically model certain aspects
of a diffusion process in networks and gain crucial insight for
tackling real-world scenarios. Even though tree networks are
used to model hierarchical structures, for example an orga-
nizational chart of a company or phylogenetic information,
most real-world networks have a non-tree like structure. Still,
the diffusion in a general network occurs along the spanning
tree of the network, which corresponds to the first time each
node became informed or infected. Consequently, source lo-
calization problem in general networks is often reduced to
source localization in trees [1, 2].

Even in a simple topology like a tree network, inability
to observe all the edges leads to a dramatic increase in the



complexity of the source localization problem. Depending on
the number of missing edges and the number of nodes, it is
possible to construct many different trees that are consistent
with the observed topology. We provide an expression for the
exact number of trees in order to assess the complexity of the
problem. Since the choice of observed nodes highly affects
the localization [2,3], we present a sufficient condition for ob-
server selection in incomplete trees that leads to the network
being observable, i.e. unambiguous source identification. Fi-
nally, we formulate source localization problem as a binary
integer program. For each node in a network, the feasibility
of the proposed program is verified in order to identify pos-
sible sources. We provide a small example to illustrate the
effect of the number of observers on the number of possible
solutions and on the time needed to obtain them.

2. PROBLEM FORMULATION

We assume the widely used Susceptible-Infected propagation
model, where once a node is infected or informed, it remains
in that state [1, 2, 4]. The diffusion starts at time 0 from a sin-
gle infected node in a network, denoted as the source node.
With simplified dynamics of deterministic diffusion, once a
node is infected at t−1, in the following time instant t, where
t is a discrete time index, it will infect all of its neighbors,
with probability 1. The time it takes for a certain node to be-
come infected is equal to its distance from the source node.
The nodes whose state can be observed, and whose infection
times are known, are denoted as observer nodes. The source
localization problem then consists of identifying the first in-
fected node based on the infection times of observer nodes.

A network of n nodes is represented using a graph G =
{V, E}, where V = {1, . . . , n} is the set of vertices repre-
senting the nodes, and E ⊆

(
V
2

)
is the set of edges. There

is an edge between nodes i and j if nodes i and j can com-
municate directly. We assume the underlying network is an
undirected tree, i.e., a connected graph without any cycles.
If k-1 edges are not observed in a tree, the observed topol-
ogy becomes a forest, a disjoint union of k smaller trees that
we will refer to as the components or subtrees. In order to
tackle source localization in a partially observed tree, we first
evaluate the cardinality of the set T , which represents the set
of all possible trees that are consistent with the observed for-
est. From each tree belonging to T , an observed k-component
forest can be obtained if k-1 edges are removed.

Lemma 1. From the forest of k components, each comprising
ci nodes, i = 1 . . . k, the total number of trees that could be
constructed by adding k-1 edges equals

|T | =
kk−2∑
p=1

∏
(i,j)∈Tp

cicj , (1)

where Tp denotes the tree belonging to a class of trees that
can be formed on a set of k nodes.

Proof. Given k nodes, Cayley’s well known formula states
that there are kk−2 spanning trees that can be constructed.
Considering components as isolated supernodes, we denote
with Tp, for p = 1, . . . , kk−2, the possible trees that can be
formed by joining supernodes in a tree, by adding k-1 edges
between them. Since an edge between two components can
connect any two nodes on each component, there are a to-
tal of cicj ways in which components i and j can be linked.
Therefore, as each edge between components i and j in a tree
Tp can be realized in cicj ways, each tree of supernodes, Tp,
can be realized as

∏
(i,j)∈Tp

cicj different trees on the set of
nodes, from which (1) follows.

Arranging the component sizes in ascending order, c1 ≤
. . . ≤ ck, the number of trees, |T |, can be bounded as

kk−2(c1)
k−1

k∏
j=2

cj ≤ |T | ≤ kk−2(ck)
k−1

k−1∏
j=1

cj . (2)

From Lemma 1 and (2), it follows that the number of possible
trees scales exponentially with the number of observed com-
ponents, and also grows with the components’ sizes. Hence,
solving the source localization problem by constructing each
possible topology and then searching for the source node
within each tree based on observed infection times is com-
putationally very challenging even for small networks with
only a few missing edges. In the next section we discuss an
observer selection strategy that guarantees that a single node
can be identified as the source despite the exponential number
of trees that are consistent with the observed topology.

3. OBSERVABILITY OF A TREE NETWORK WITH
MISSING EDGES

The infection times of the observers correspond to their dis-
tance to the source. Since the node distances are different for
different trees that belong to the set T , not all topologies are
consistent with the observed infection times. The number of
nodes and topologies that match the observed times and net-
work structure depend on the number of missing edges, the
placement of observers and the source. When the choice of
observers is such that unambiguous source identification is
guaranteed, for each possible source, we denote this forest as
observable [3]. Now we review the necessary concepts.

A leaf in a forest or a tree is a vertex of degree 1. A path
i − j is a sequence of all different nodes starting from i and
ending with j. The distance between two nodes i and j in
a tree T is denoted as dT (i, j) and it represents the number
of edges in the shortest path between them. Let LT be the
set of all leaves of a tree T and LF the set of all leaves in a
forest F . If O denotes the set of observers {o1, . . . , or}, then
dT (i, O) is the r-vector of distances from node i to the set
of observers [dT (i, o1), . . . , dT (i, or)]. In [3], it was shown
that for a given graph G, unambiguous source localization



is possible if the set of observers forms a resolving set, i.e.,
when dG(i, O) 6= dG(j,O) for all i, j pairs of nodes [7].
This concept can be extended to the case when some of the
edges are missing. Correct source localization is possible if
all nodes have different distance to the set of observers across
all possible trees that correspond to the observed forest. We
will show in Theorem 1 that if all the leaves of the forest are
observed, the source can be correctly identified, but first we
need the following lemmas.

Lemma 2. All nodes in a tree T have unique distance to the
set of leaves, i.e., dT (i, LT ) 6= dT (j, LT ), ∀i, j ∈ V , i 6= j.

Proof. The minimum resolving set of a tree T equals |LT | −
|KT |, where KT is a set of nodes of degree 3 or more that are
connected by paths to one or more leaves [7]. Here we prove
a weaker claim, needed for the following steps. The proof
is by contradiction. Let us assume there exist two nodes i
and j such that dT (i, `) = dT (j, `), for all ` ∈ LT . Nodes
i, j /∈ LT , as we would have dT (i, i) = 0 6= dT (i, j). Let
us root the tree on an arbitrary leaf and let w be the lowest
node in T that has both i and j as descendants. Since nodes
i and j are at the same distance to the root, they are also at
the same distance from w, i.e. dT (i, w) = dT (j, w). As i
is not a leaf, it has a degree of at least two, and hence it has
a descendant leaf l on the path that does not include w. As
l ∈ LT , by assumptions dT (i, l) = dT (j, l) holds. Then we
have dT (l, w) = dT (l, i) + dT (i, w) = dT (l, j) + dT (j, w).
Now we have that between nodes l and w there exist two equal
length paths, one passing through i and the other through j.
As there is only one path in a tree between any pair of nodes,
we arrive at a contradiction and this proves the claim.

Lemma 3. All nodes in a forestF have unique distance to the
set of forest leaves within each tree that could be constructed
from the forest, i.e. dT (i, LF ) 6= dT (j, LF ) for all i, j pairs
of nodes, i 6= j, and for all T ∈ T .

Proof. Connecting all the subtrees in a forest into a sin-
gle tree by adding new edges does not create new leaves.
Hence, LT ⊆ LF , for any T ∈ T . From Lemma 2, we
have dT (i, LT ) 6= dT (j, LT ), from which dT (i, LF ) 6=
dT (j, LF ) follows.

Theorem 1. All nodes in a forest F have unique distance
to the set of forest leaves across all trees that could be con-
structed from the forest, i.e. dT1

(i, LF ) 6= dT2
(j, LF ) for all

i, j pairs of nodes, i 6= j, and for all T1, T2 ∈ T .

Proof. Since Lemma 3 states that no two nodes can have the
same distance to the forest leaves within the same fixed tree,
now we only need to prove that the same holds for any two
different trees from the class of T . The proof is by contradic-
tion. Let us assume there exist two different nodes i and j,
and two different trees T1, T2 ∈ T , such that dT1(i, LF ) =
dT2(j, LF ). Let Vc denote the set of nodes from component
subtree c, for c = 1, . . . k. With the same argument as in

Lemma 2, nodes i, j /∈ LF . Since the leaves of each compo-
nent are included in LF , Lemma 2 applies, and all the nodes
on the same component have different distances to the set LF .
Therefore nodes i and j can only belong to two different com-
ponents. Let us assume i ∈ Va and j ∈ Vb. Let p and q be
two nodes such that the components a and b in tree T2 are
connected by path p − q, with p ∈ Vb and q ∈ Va. Node p
can be node j and q can be node i, or any other node, and
between nodes p and q there may be just an edge or a path
through some other subtree. If q is a leaf, let l = q, otherwise
let l be an arbitrary leaf on the subtree of i. Since l ∈ LF ,
from our assumptions we have

dT2
(j, l) = dT2

(j, p) + dT2
(p, q) + dT2

(q, l) (3)
= dT1

(i, l) = dT2
(i, l).

The last equality comes from the fact that l, i ∈ Va and the
distances within the subtree are the same, regardless of which
edges are added between the subtrees. Since dT2

(p, q) ≥ 1,
from (3) we have that

dT2(j, l) > dT2(q, l). (4)

If node i was on the path between q and l, for the case of
q 6= l, we would have dT2

(q, l) = dT2
(q, i) + dT2

(i, l) =
dT2

(q, i) + dT2
(j, l), which contradicts (4). Therefore, we

assume i is not on the path q − l, for the case q 6= l. As i has
a degree greater than 1, it has a descendant leaf, node f , that
is not on the path i− q. Now, the distance between two leaves
f and l equals

dT2
(f, l) = dT2

(f, i) + dT2
(i, q) + dT2

(q, l)

= dT2
(f, i) + dT2

(i, l) = dT1
(f, i) + dT1

(i, l)

= dT2
(f, j) + dT2

(j, l).

The last equality comes from the assumption that node j has
the same distance to all the leaves in T2, as node i in tree T1.
Finally, from the above we have that between two nodes f
and l, there exist two equal length paths, one passing through
node i, and the other through node j in a tree T2. Since there
is only one path between any pair of nodes in a given tree, we
again arrive at contradiction and this completes the proof.

4. SOURCE LOCALIZATION

Localization of a source in a tree network, when some edges
are unknown, under the assumption of deterministic diffu-
sion, can be formulated as a binary integer linear program.
For each node s in a network, a multicommodity flow prob-
lem with side constraints [8] is formulated, assuming node s
is the source, and its feasibility is checked. If the problem is
feasible, node s is a viable source suspect. A feasible solution
implies that there exists a tree consistent with the observed
forest, such that the distances from the assumed source to the



observers are equal to the observed infection times. Assum-
ing the optimization problem is feasible for a certain node, by
solving it, the tree topology is recovered. There might exist
more than one tree with the required distances for each source
suspect. Solving the optimization problem gives us the struc-
ture of at most one tree, as the main goal is to verify the pos-
sibility of a node being the source, and for this, the existence
of a single tree is sufficient.

The incidence matrix B of a graph with m edges and n
nodes is an n ×m matrix, with entry bij equal to 1, if node
i is the head of the edge j, equal to −1 if node i is the tail
of the edge j and zero otherwise. Since the graphs we are
interested in are undirected, the direction of the edges can
be set arbitrarily, as later we will consider each edge twice,
once for each direction, as it is typically done for similar net-
work optimization problems [8]. Let us denote with Ep a
set of all possible missing edges comprising only edges be-
tween the nodes of different components. With Bext we de-
note an extended incidence matrix, where the edges are from
the set of known edges, as well as from the set of possible
missing edges Ep. With B̃ = [Bext,−Bext] we denote an
incidence matrix, where we consider all the edges of Bext in
both directions. The set Ej is a set of edges that are inci-
dent with the observer j, and similarly, the set Es is a set of
edges that are incident with the assumed source s. The set of
edges that connect components a and b is denoted as Ea,b, for
a, b = 1, . . . , k and a 6= b.

An optimization variable in our formulation is a binary
vector, x ∈ Rm, whose i-th entry is set to 1 if edge i, from
matrix Bext, is selected to be a part of the final constructed
tree. For each observer node j, an auxiliary binary optimiza-
tion variable xj ∈ R2m is used to construct a path between
the observer j and the assumed source s. If its i-th entry
equals 1, then this implies that edge i from matrix B̃ is a part
of the constructed path. The infection time of the observer
node j is denoted as tj . With 1 we denote a vector where all
entries are equal to 1, while ei denotes a column vector where
all entries are equal to 0 except for the i-th entry, which equals
1. Matrix A has the structure [Im, Im], where Im is an identity
matrix of size m. Finally, we state a binary integer program
that verifies whether a node s could be the source of diffusion.

min 1Tx (5)
subject to

B̃xj = ej − es (6)

1Txj = tj (7)
Axj ≤ 1 (8)∑

p∈Ej

eTp Axj ≤ 1 (9)

∑
p∈Es

eTp Axj ≤ 1 (10)

Axj ≤ x (11)

∑
o∈O

Axo ≥ x (12)

x ≤ 1 (13)∑
p∈Ea,b

x(p) ≤ 1 (14)

∑
p∈Ep

x(p) ≤ k − 1 (15)

xj ∈ {0, 1}2m (16)
∀j = 1, . . . , r

∀a, b = 1, . . . , k, a 6= b

Constraint (6) sets the path between each observer node
j and the assumed source s [8], while constraint (7) makes
the length of that path equal to the infection time. Each ob-
server - source path should not include the same edge in two
different directions, and this is set by (8). Additionally, ob-
server j and the source s should only be the terminal points
of the path, which is constrained by (9) and (10), respectively.
The paths are directed from the observers to the source, and
therefore constructed from the edges of matrix B̃, which in-
cludes each edge in both directions. However, the goal is to
construct an undirected tree from the union of these paths. By
(11)–(13), an edge is used to construct a tree if it is in at least
one observer-source path, regardless of the direction in which
it was used. Hence the dimension of x, a variable that repre-
sents edges in the final tree is only half of the dimension of
the variables xj that represent the paths. Constraint (14) en-
sures that the constructed union of paths contains at most one
edge that connects two components, in order to avoid inter-
component loops. Since there are k components, at most k-1
edges can be added from the set of all the possible edges, and
this is the role of the constraint (15). Finally, (16) constrains
the variables xj to be binary. Explicit enforcement for the
binary structure of x is not necessary, as it is formed through
constraints (11)–(13) on binary variables xj .

The above formulation does not require that the final
constructed topology include all components, but rather only
those that contain observers. Of course, by constructing paths
some components without any observers might be included,
but it is not a requirement. Hence, in the case of observers
being chosen from only a small number of components, it is
possible that constructed paths might have intra-component
cycles resulting in a non-tree final topology. In this case, a
node might be falsely assumed to be a suspect source. How-
ever, then it is possible to use an algorithm for detecting
cycles in the final topology to discard non-tree solutions.

Solving the source localization problem as a binary opti-
mization problem is computationally expensive. However, it
does not require explicit construction and storage of an expo-
nential number of trees. In case a sufficient condition given
by Theorem 1 is satisfied, as soon as the problem is feasible
for one node, the solving process can be terminated, as the
solution is unique.
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Fig. 1. The effect of the number of observers on the optimization problem (5) for a 20 node tree with two unobserved edges.

5. SIMULATION RESULTS

We illustrate the effect of the number of observers on the
source localization problem for a tree network of 20 nodes
with two unobserved edges. From this partially observed tree,
5, 880 trees can be constructed by adding 2 edges. The total
time needed to verify the feasibility of the linear binary pro-
gram (5) for each node in a network was recorded, as well
as the number of nodes for which the problem was feasi-
ble. These results were averaged over all possible sources
and simulations were repeated for different numbers of ob-
servers, selected sequentially from each of the 3 components
sized 6, 7 and 7 nodes. During selection, priority was given
to 11 leaves. Figure 1 (a) shows that initially the time needed
to solve (5) dramatically grows with the number of observers,
while Figure 1 (b) shows an opposite trend in the number of
possible solutions. Initially, with almost no constraints, a tree
consistent with the observations can quickly be constructed
for many nodes. Including more observers increases the num-
ber of constraints and more time is needed to find such a tree
or conclude that the problem is unfeasible. The rate by which
the number of suspects decreases with the number of observed
leaves dramatically drops after including at least one node
from each component. When the number of observers reaches
9, the network becomes observable. Around that point, corre-
spondingly, the solving time starts to decrease with the num-
ber of observers. Now, only one node can be the source sus-
pect, and for all the other nodes, the problem can relatively
quickly be classified as unfeasible due to an increasing num-
ber of constraints.

6. CONCLUSION

We have evaluated the number of topologies to which a par-
tially observed tree might correspond, demonstrating that the
number of possible trees scales exponentially with the num-
ber of missing edges. We showed that in order for the source
to be localized correctly, regardless of its position in the net-
work, all nodes should have unique distance vectors to the
set of the observer nodes, in all the corresponding tree net-
works. We proved that observing the set of leaf nodes of the

forest is sufficient for the source to be identified in a simple
propagation scenario in tree networks. Finally, we formulated
the problem of source localization from the infection times of
a subset of nodes, with deterministic propagation model and
partially known tree topology, as a binary linear integer opti-
mization problem. Although, computationally intensive, the
proposed formulation does not require explicitly enumerating
an exponential number of trees that might correspond to the
incompletely observed network.
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