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ABSTRACT
In this paper a novel algorithm for sound texture synthesis is
presented. The goal of this algorithm is to produce new ex-
amples of a given sampled texture, the synthesized textures
being of any desired duration. The algorithm is based on a
montage approach to synthesis in that the synthesized texture
is made up of pieces of the original sample concatenated to-
gether in a new sequence. This montage approach preserves
both the high level evolution and low level detail of the origi-
nal texture.

Index Terms— Sound, texture, synthesis, concatenative.

1. INTRODUCTION

Sound textures are a class of sounds typically associated with
the background of a scene; for example rain, fire, or machin-
ery. It is difficult to define precisely the properties of sound
textures. Saint-Arnaud and Popat [1] offered some sugges-
tions towards a working definition. They suggest that sound
textures should, in some sense ‘exhibit similar characteristics
over time’; that is that one short snippet of a texture should
exhibit similarities to another. They also suggest a two level
description of textures. At the low level atoms of the texture
are time localized sound elements, and the higher level de-
scribes the distribution of these atoms. They note that while
such an atomic model is sometimes relevant to the physics of
the texture, e.g. rain, they do not intend it as a general phys-
ical description. They give some points summarizing their
working definition of sound textures.
1. Sound textures are formed of basic sound elements, or

atoms.

2. Atoms occur according to a higher-level pattern, which
can be periodic, random, or both.

3. The high-level characteristics must remain the same over
long time periods (which implies that there can be no
complex message).

4. The high-level pattern must be completely exposed within
a few seconds attention span.

5. High-level randomness is also acceptable, as long as there
are enough occurrences within the attention span to make
a good example of the random properties.

McDermott et al [2,3] suggest that given the temporal ho-
mogeneity of sound textures they can be characterized by time
averaged statistics. This approach was inspired by previous
work on image textures [4]. This hypothesis was tested by
synthesizing various textures by imposing the statistics of a
particular texture on a white noise sample. The statistics used
were statistics describing the amplitude envelopes of the tex-
tures after being passed through an auditory filterbank. These
statistics included the first four moments of the envelopes,
cross correlation between envelopes, and some measures re-
lating to the autocorrelation of each envelope. The result-
ing synthesized sounds were not intended to be perceptually
accurate reproductions, rather they were meant to test their
hypothesis. They found that the synthesized sound textures
could indeed be identified.

These studies give important insights into the require-
ments of a synthesis algorithm. There are many approaches
to sound texture synthesis (for a thorough review of the liter-
ature see [5]). Broadly speaking, we can group these methods
into model based approaches where the signal is synthesized
from model parameters, and sampling or granular approaches
where content from the original signal is used in the synthe-
sized signal.

For many applications, such as cinema and computer
games, realism of the synthesized sound is paramount. Sam-
pling based methods can bring realism as they contain ele-
ments of the target sound. Some previous sampling based
algorithms [6, 7] look for points of change to segment texture
signals, these segments are then concatenated in a proba-
bilistically determined sequence to produce the synthesized
texture. The algorithm of Dubnov et al. [8] uses similarity
in history and scale to select sampled wavelet coefficients.
Drawbacks of sampling based methods include repetitions
of parts of the original signal, difficulty modeling the higher
level structure of the texture, and smooth concatenation of the
sampled elements.

The proposed algorithm falls into the sampling based cat-
egory. It looks to exploit regions of similarity in the original
texture to inform the sequencing of sampled elements. There
are two levels to the synthesis model. Longer term sections,
called segments, are used to model the higher level struc-
ture of textures. These segments are synthesized from the
concatenation of shorter term sections, called atoms. Atoms



preserve the local structure of the texture. The sequences of
both the segments and atoms are modeled probabilistically,
this avoids repetition in the synthesized texture. A new over-
lap add method is introduced for concatenation. This enables
concatenation with short overlap without introducing percep-
tible modulations.

The paper is organized as follows: Section 2 discusses the
relationship of the algorithm to the properties of sound tex-
tures outlined in section 1. Section 3 presents the algorithm
in detail. Section 4 presents some sound examples. Section 5
presents some conclusions and possible future work.

2. THE RELATIONSHIP OF THE MONTAGE
APPROACH TO SOUND TEXTURE PROPERTIES

As stated in the introduction, the montage approach to texture
synthesis has two levels; segments and atoms. Segments are
used to model the high level structure of the texture. By high
level structure we mean features that determine the long term
structure of a texture such as quasi-periodicity (e.g. pneu-
matic drill) or randomness (e.g fire). At the lower level atoms
preserve the local structure of the segments.

Segments are modeled after longer sections of the texture.
There is not a set length for a segment, rather they have user
defined minimum and maximum lengths. The length of each
segment is dependent on the selection of its successor. The
sequencing of segments is informed by both local similarity
for concatenation, and longer term similarity for preserving
higher level structure. This sequencing has a probabilistic el-
ement to avoid repetition in the higher level structure of the
synthesized texture.

These segments are used as templates for the synthesized
texture. The segments are synthesized by a process of atom
substitution. The original texture is split into atoms. These
atoms all have the same user defined duration. For each atom
a number of candidates are selected as possible replacements.
These candidates are selected from throughout the texture
based on the local similarity of the envelopes from an audi-
tory filterbank analysis. This ‘envelope matching’ preserves
the phase of envelope modulations in the synthesized tex-
ture. The synthesis of segments consists of substituting each
of the original atoms with one of its qualifying candidates
(including itself as one of the candidates). The selection
of substitutes is probabilistic. This process preserves local
structure and introduces new variation over the duration of
the segment not present in the original texture. This is to
avoid repetition on the atom scale in the synthesized texture.

The algorithm can be considered in terms of the properties
of sound textures suggested by Saint-Arnaud and Popat [1]
quoted in section 1.

• The presented model synthesizes textures from atoms.

• The high-level pattern of the atoms is preserved by se-
quencing them according to segments of the original tex-

ture. If there is periodicity in the texture it can be repro-
duced because the atoms will be aligned according to the
original texture, this effectively matches the phase of the
envelopes. Likewise randomness is maintained by ran-
domizing both the selection of segments from the candi-
date successors and the choice of atom from the candi-
dates for substitution.

• New high level structure will be introduced due to the se-
quencing of segments. As the long-term similarity of seg-
ments are matched this new structure should be coherent
with the original texture.
The algorithm can also be considered in terms of the sta-

tistical description of the envelopes suggested by McDermott
in [3].
• If the segments are distributed approximately evenly over

the duration of the synthesis the moments of the envelopes
will be approximately equal to those of the original.

• As the atoms are sampled from the original texture the
local synchronicity of the envelope modulations is pre-
served. This is related to cross correlation of the en-
velopes in McDermott’s texture model.

• The matching of atoms over localized time and frequency,
the sequencing of atoms from segments of the original,
and the transitions based on history all relate to the auto-
correlation of the envelopes; the atom sequencing preserv-
ing local modulations and the segment sequencing pre-
serving/synthesizing longer term modulations.

3. THE ALGORITHM

In this section the algorithm for analysis and synthesis of tex-
tures using the proposed approach is described. After the
analysis phase the choices for synthesis are tabulated; all pos-
sible segments have candidates for their successors and each
atom of the texture has candidates for substitution.

3.1. Analysis

The analysis stage of the montage approach involves finding
regions in the texture that are in some way similar - this is
necessary both for the selection of candidates for segment
succession and the selection of candidates for atom substi-
tution. The first step in the analysis is to represent the signal
in a suitable form. As ultimately we are concerned with the
perceptual closeness of the synthesized signal to the original a
perceptually informed representation of the signal is utilized.

As much of the salient information in textures is contained
in the envelopes of the auditory bands [3], a suitable compar-
ison for similarity is taken to be a comparison of the time
evolving energy from an auditory filter bank. The short time
Fourier transform is a common and suitable processing plat-
form, and so the algorithm will be presented in the context of
the STFT.



The STFT is given by:

X (l, k) =

N−1∑
n=0

x (n)ω (n− lh) e
−i2πnk

N . (1)

Where ω is the window function, l is the frame number, k is
the frequency bin, N is the analysis window length and h is
the hopsize.

Taking the envelopes to be the energies in subbands dis-
tributed according to the ERB scale:

engEnvb (l) =

kb2∑
k=kb1

|X (l, k)|2 Hb (k) . (2)

Where kb1 is the first bin and kb2 is the last bin of the bth
band and H is a bank of (frequency domain) band pass filters.

The envelopes then undergo further perceptual process-
ing. The perceived change in loudness with intensity approx-
imately obeys a power law. Hence the envelopes are com-
pressed nonlinearly to simulate this. Each band is also scaled
according to the equal loudness curve.

envb = (engEnvb/L (fb))
0.3

. (3)

Where L is the loudness curve, fb is the centre frequency of
the bth band and 0.3 is an experimentally determined expo-
nent [9].

This gives a perceptually informed time/frequency repre-
sentation of the signal sampled at the rate of the STFT anal-
ysis. Here we will refer to each time slice of both the STFT
and the perceptually processed STFT as a frame.

The next stage in the analysis divides this representation
of the signal into atoms. Each atom comprises several anal-
ysis frames and have a 50% overlap with neighboring atoms.
The atoms should be long enough to enable the comparison of
envelopes and short enough to ensure enough variation in the
synthesized texture. In our example set [10] we use 0.1s as
the atom duration. This gives us a time/frequency represen-
tation of each atom. Each of these atoms undergoes further
analysis; looking for similar regions over the duration of the
texture.

3.1.1. Candidates for Atom Substitution

For each atom a difference function is created. This differ-
ence function gives us a measure of the difference between
the atom under consideration and the associated region of the
texture. The difference function for the ath atom at the lth
frame is given by:

da (l) =

√√√√F−1∑
f=0

B∑
b=1

{envb (l + f)− envb (aF/2 + f)}2.

(4)
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Fig. 1. Selection of candidates for an atom

Where F is the number of frames in an atom and the atoms
have a 50% overlap, i.e. an atom hopsize of F/2. This differ-
ence function is calculated at intervals of a single frame. This
difference measure corresponds to the euclidean distance be-
tween the auditory envelopes of the atom and the auditory
envelopes of the texture from the lth to l + F − 1th frame.

A set of substitution candidates for each atom is selected
from local minima in the difference function. There is a min-
imum time distance between selected candidates, dependent
on the number of candidates to be selected. This is to ensure
that candidates are selected from across the duration of the
analyzed texture. This can be important for the selection of
segments successors, as the candidates for substitution will
also be considered as candidates for segment successors, and
for this purpose it is desirable to have candidates spread over
the duration of the texture.

An example of a difference function and candidates for a
single atom of a texture are shown in Figure 1 for a helicopter
sample (available to listen to at [10]). This is a quasi periodic
texture, and this example illustrates how periodicity of events
can be preserved with this model. Note that the envelope of
the candidates is in phase with the envelope of the original
atom. It is not necessary to retain the difference function after
the analysis of an atom. Once the candidates for substitution
are tabulated the difference function can be discarded. The
result of the atom analysis is a list of pointers to the addresses
in the original STFT of candidates for substitution and a nor-
malized difference value (normalized by the euclidean norm
of the original atom associated to the difference function) for
each of the candidates.

3.1.2. Candidates for Segment Successors

During synthesis segment succession occurs by substituting
the last atom of the current segment with the beginning of its
successor. And so each atom will be considered as a potential



Fig. 2. Transition from reading one segment to starting an-
other

end of a segment and its candidates for substitution as a po-
tential beginning for a succeeding segment. For segments, as
well as the local similarity from the atom analysis, a longer
term comparison is used. This is termed the history for the
segment. Hence, a history comparison is also made between
each atom and its candidates for substitution. This will be
used to judge the possibility of a segment succession at the
location of the atom during synthesis. No difference function
is created as the history is only calculated for already found
atom candidates.

As each segment has a minimum and maximum duration,
the succeeding segment will begin between these points (see
section 3.2.1). And so in the analysis phase each atom in
this range is considered as a possible transition point from the
current segment to its successor. This can be considered as a
moving window analysis, the window length being the maxi-
mum minus the minimum duration of a segment. An example
of a subset of possible segment succession points found for a
texture is illustrated in Figure 2. For each step in this anal-
ysis there are typically many candidates. For example, for a
single instance of this analysis if the difference between the
minimum and maximum length between transitions is 1.5 sec-
onds, and there are 20 atoms per second and 10 candidates per
atom then there are 300 candidate points to consider as pos-
sible transition points. Only the succession points with the
lowest measured difference are considered, again the selected
succession points spanning the duration of the texture. The
outcome of the succession analysis is a table of pointers for
candidate segment end points for the current segment, asso-
ciated difference values, and associated starting points for the
next segment.

3.2. Synthesis

During synthesis the segment sequence is selected. From this
the sequence of atoms is derived. These atoms are concate-
nated in the STFT domain before inverse Fourier transform
and final overlap/add in the time domain are performed.

Fig. 3. Sequence of transition in synthesized texture vs origin
in original texture (time of synthesized vs time of original).

Fig. 4. Sequence of atoms in synthesized texture vs origin in
original texture (time of synthesized vs time of original).

3.2.1. Sequence Model

Starting from a random point in the original texture the al-
gorithm selects successive segments from the candidates se-
lected during analysis. This high level navigation of the tex-
ture acts as a template for the synthesized texture. There are
some constraints on the choice of succeeding segments:
1. A segment must be at least a minimum, user defined,

length.

2. A segment has a maximum, user defined, length.

3. If the succeeding segment occurs some time before the
current segment in the original texture that time must be
greater than a user defined minimum (at least equal to the
length of the transition ’history’).
The first constraint serves two functions: it prevents the

synthesized texture from jumping too much and it allows the
candidates for succeeding segments to be selected in the anal-
ysis phase. The second constraint prevents keeping the same
high level structure as the original for long periods. The third
prevents repeating parts of the high level structure in rapid
succession.

Once a segment successor is selected the duration of
the current segment is determined. The atoms for this seg-
ment can then be substituted probabilistically with the can-
didates selected during analysis. A difference threshold can
be used in the selection of atom substitutes. This defines the



maximum difference allowed between atoms and possible
switches. It was found that taking the median value of the
normalized difference of all the candidates for all the atoms
was an effective value for thresholding. An example of the
sequencing of transitions and substitutions is illustrated in
Figure 3 and 4.

The process of segment succession and atom substitution
can continue for any desired period of time, avoiding repeti-
tion and producing varied textures modeled from the original
texture.

3.2.2. Overlap Add Operation

If we see the atoms as pieces of a jigsaw, the overlap-add oper-
ation can be seen to be a way of squeezing in pieces similar to
the original into their place. Straightforward overlap-adding
of broad band noise leads to modulations due to phase in-
terference. Here a new solution to this problem is proposed.
The cross fade of the atoms is done in the STFT domain. The
number of frames involved in the cross fade is dependent on
the bin number of the DFT (i.e. it is frequency dependent).
The cross fade region is taken to be 4 times the inverse of the
bin center frequency (i.e. 4 times the period), with a maxi-
mum of half the number of frames in an atom and a minimum
of a single STFT frame. For bins with an overlap region less
than half an atom length the point of maximum cross fade
(i.e. 50%) is positioned at the point of least interference. This
point is taken to be the point at which the absolute value of
the complex difference in the overlap region is minimum.

4. RESULTS

The presented algorithm was used to synthesize both textures
containing quasi periodic elements and textures of a more ran-
dom nature. The synthesized samples are twice the duration
of the originals. The original samples were taken from [3].
The details of the synthesis for these sounds are as follows:
the atom length was set to 0.1 seconds, the history set to 0.5
secs, and the maximum duration before a new transition set
to 2 seconds. 20 candidates were selected for each atom, and
5 candidates selected for each transition. The transition can-
didates were selected by a simple sum of the normalized dis-
tance (the euclidean norm of the atom/history under consid-
eration) of the atom (local) difference and difference in histo-
ries. These examples can be found at [10].

5. CONCLUSIONS

In this paper an efficient and versatile algorithm for sound tex-
ture synthesis was presented. For efficient synthesis the atom
and transition candidates can be tabulated from the analysis
phase. Synthesis is then a fairly straightforward overlap add
procedure in the STFT domain. The algorithm fulfills many
requirements of a sound texture synthesis algorithm as set out

by [1, 3]. At the low level the textures are synthesized from
atoms and these atoms are sequenced to model the higher
level organization of the original sound texture. Repetitions
are avoided by introducing randomness in the sequencing of
both the atoms and the segments, and smooth transitions are
constructed by taking account of local similarity, longer his-
tory and a new overlap/add method.
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