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ABSTRACT

The separable wavelet transform has limited directional sensi-
tivity and is suboptimal for compression of textured images.
A finer directional resolution and better coding results can be
achieved by contourlet transform. So far, directional filters
based on design criteria that are unspecific to image compres-
sion were used for contourlet transform. We propose direc-
tional filters that are optimized specifically for image coding.
Thereto, a filter design method that is based on maximization
of coding gain was developed. Directional filters were de-
signed for all images of two standard test image databases and
compared experimentally to standard filters. In most cases the
newly designed filters performed better than standard filters.

Index Terms— Contourlets, image coding, filter design

1. INTRODUCTION

Image transform coding uses the fact that the coefficients of an
appropriate transform can be coded more effectively than the
original pixels, due to the transform’s ability to decorrelate im-
age information. In lossy compression, storage space is further
reduced by discarding or approximating coefficients that con-
tribute less to the visual appearance of an image. Frequently,
the separable wavelet transform is used for this task, but its
limited directional sensitivity restricts its performance for im-
ages with distinct textures. Multiple alternative transforms
attempt to increase directional sensitivity [1]. Among them,
the mildly redundant contourlet transform allows arbitrarily
fine directional partitioning, while sharing frequency and spa-
tial sensitivity with wavelets [2]. Its quality of directional
partitioning, thereby its coding performance depend on the
frequency characteristics of the underlying directional filters.
Here, a novel method for the design of these filters is proposed.
Its difference to existing methods is covered in section 2, while
the method itself is detailed in section 4.

2. RELATED WORK

Contourlet transform combined with different quantization
and entropy coding methods was occasionally used for im-
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age compression, e. g. [3, 4]. Results indicate that contourlet
transform is advantageous for highly textured images, while
it does not beat wavelet transform for smooth images due to
its redundancy. Therefore, contourlet transform becomes less
advantageous in downsampled images. This led authors to con-
struct hybrid transforms, which use the directionally sensitive
contourlet transform on fine scale levels and the non-redundant
wavelet transform on coarse scale levels [5].

All applications of contourlet transform to image coding
either use so called Phoong-Kim-Vaidyanathan-Ansari (PKVA)
filters [6] or biorthogonal Cohen-Daubechies-Feauveau (CDF)
filters [7] in the directional filtering stage. These filters were
designed for low-/high-pass filtering within the separable or
quincunx wavelet transform respectively. To obtain the di-
rectional sensitivity needed for contourlet transform, the non-
separable PKVA-filters are modulated towards a fan-shaped fre-
quency characteristic, while the separable CDF-filters have to
be transformed into two-dimensional filters by the McClellan
transform before being modulated as well. Two additional di-
rectional filter designs for contourlet transform exist, but have
found no application to image coding so far. One is a variant
of PKVA-filters, obtained by applying the mapping mechanism
of [6] to a Chebyshev approximation of ideal one-dimensional
low-pass filters [8]. The second is a design method based
on the criterion of directional vanishing moments instead of
considering frequency characteristics [9].

Thus, so far only directional filters that were neither de-
signed specifically for directional filtering nor for coding ap-
plications are used for contourlet based image compression.
We explore the potential of directional filters that maximize
coding gain, which is a measure that is directly related to the
quality of a compressed image. Those design methods are
known for separable wavelets [10] and for frequency-selective
quincunx filter banks [11] but not for directional filter banks.
Preliminary results indicated that filter design for contourlets
based on optimized coding gain is beneficial [12].

3. CONTOURLET TRANSFORM

Contourlet transform is a two-step transform [2]. In a first
step an image x with N pixels, each associated with a two
dimensional position n, is separated into its low-pass and high-
pass parts x0 and x1 by a Laplacian pyramid. Afterwards, a
directional filter bank is used to dissect the high-pass part x1



into K channels, which represent different orientations within
the image. Directional filtering is performed by filters Fi, i =
0 . . . 3, which show fan-shaped frequency characteristic. These
filters let either horizontal or vertical edges pass. Filtering of
oblique edges is achieved by downsampling x′(n) = x(Qµn)
with quincunx downsampling operators

Q0 = QT
1 =

(
1 −1
1 1

)
, (1)

which cause rotation by 45°(Q0 to the right, Q1 to the left).
The number of channels K = 2L, i. e. the directional reso-
lution, is determined by the number of levels L within the
directional filter bank. Each level l = 1 . . . L comprises fan
shaped filter Fi and quincunx downsampling operators Qµ.
Levels l > 2 additionally use resampling x′(n) = x(Rνn)
with shearing operators

R0 = R−11 = RT
2 = R−1T3 =

(
1 1
0 1

)
. (2)

The output of the directional filtering stage, i. e. contourlet
coefficients yk of each channel k = 0 . . .K − 1, are used
to reconstruct the original image by reverting the filter bank
operations of the analysis stage with synthesis filters Ei and
upsampling

y′k(n) =

{
yk(Q

−1
µ n), Q−1µ n ∈ Z2

0, otherwise
. (3)

If contourlet coefficients yk are quantized before reconstruc-
tion, as in lossy compression, the reconstructed image x̃ is an
approximation of the original image x.

4. NEW APPROACH

To keep compressed image x̃ as similar as possible to orig-
inal image x, filters that minimize the reconstruction error
‖x̃− x‖ shall be obtained by the filter design procedure de-
scribed below. Thereto equivalent filters that account for the
modifications of the image from x to x̃ by the directional filter
bank are derived in sections 4.1, 4.2, and 4.3. Based on these
filters, the reconstruction error and its normalized variant can
be estimated quantitatively as shown in sections 4.4 and 4.5.

4.1. Lifting Filters

To ensure invertibility of the filter bank without imposing ad-
ditional constraints, a lifting framework is used. Analysis and
synthesis filters Fi andEi are factored into Λ lifting steps each
comprising a prediction filter P2λ and an update filter P2λ+1,
λ = 0 . . . Λ− 1, which operate on polyphase components of
the image [13]. The same lifting filters are used throughout
all channels and levels of the directional filter bank. We fur-
ther impose prediction-update-symmetry and separability in
z-domain

P2λ+1(z) = −1/2P2λ(z) = 1/2 pλ(z0)pλ(z1) (4)

as well as a symmetric impulse response

pλ(z) =

Z−1∑
ζ=0

(−1)ζ+1pλζz
−(ζ+1) + (−1)ζpλζzζ (5)

upon the lifting filters. This approach creates filters that are
structurally identical to the PKVA-filters [6]. The ΛZ indepen-
dent lifting filter coefficients pλζ are subjected to optimization
by the filter design procedure.

4.2. Fan-Shaped Filters

Fan shaped filters Fi and Ei are obtained from lifting filters P
by expansion of their transfer functions:(
F00(z) F01(z)
F10(z) F11(z)

)
=

Λ−1∏
λ=0

(
0 1
1 P2λ+1(z)

)(
1 0

P2λ(z) 1

)
(6)

and taking

F0(z) = z1F00(z
Q0) + F01(z

Q0) E0(z) = z−11 F1(−z)
F1(z) = z1F10(z

Q0) + F11(z
Q0) E1(z) = −z−11 F0(−z)

F2(z) = z0F00(z
Q1) + F01(z

Q1) E2(z) = z−10 F1(−z)
F3(z) = z0F10(z

Q1) + F11(z
Q1) E3(z) = −z−10 F0(−z) ,

(7)
where

zQ =

(
z0
z1

)Q00 Q10

Q01 Q11


=

(
zQ00

0 · zQ10

1

zQ01

0 · zQ11

1

)
accounts for upsampling in the z-domain [11].

4.3. Equivalent Filters

One can interchange the order of filtering and resampling
such that two filters and two resampling operations can be
combined into a single filter and a single resampling operation.
By recursive repetition, it is possible to construct equivalent
filters Hk and Gk that resemble the effect of all filters within
one channel k.

In a two level, i. e. four direction, filter bank the equivalent
filter for channel k combines the filters of the first stage with
upsampled versions of the filters of the second stage:

H
(2)
0 (z) = F1(z)F2(z

Q0) H
(2)
2 (z) = F0(z)F2(z

Q0)

H
(2)
1 (z) = F1(z)F3(z

Q0) H
(2)
3 (z) = F0(z)F3(z

Q0) .
(8a)

For any level l > 2 the equivalent filter is given by the recursive
definition

H
(l)
k (z) = H

(l−1)
k′ (z) Fi

(
zS

(l−1)

k′ Rν

)
, (8b)

where k′ = bk/2c is the index of equivalent filter H(l−1)
k′ ,

which summarizes all previous filters in the current branch.



The second multiplicand is the uspampled version of the fan
shaped filter of level l, whose type (F0, F3 vertical-pass; F1,
F2 horizontal-pass) is determined by index

i =


k mod 4, k < 2l/2

k mod 4 + 2, k ≥ 2l/2 ∧ k mod 4 < 2

k mod 4− 2, k ≥ 2l/2 ∧ k mod 4 ≥ 2

. (9)

Upsampling occurs by a combination of the equivalent dila-
tion matrix S

(l−1)
k′ as given by (11) with the current shearing

matrix Rν as specified by (2). The type of shearing matrix is
selected by

ν =

{
b(k mod 4)/2c , k < 2l/2

b(k mod 4)/2c+ 2, k ≥ 2l/2
. (10)

Equivalent filters for synthesis are obtained by replacing
H

(l)
k (z) by G(l)

k (z) and Fi(z) by Ei(z) in (8).
Similarly, the downsampling and upsampling operations

can each be combined into resampling with equivalent dilation
matrices. For a two level filter bank this matrix combines the
quincunx resampling matrices of levels l = 1 and l = 2:

S
(2)
k = Q0Q1 , (11a)

while for levels l > 2 an additional shearing matrix Rν must
be taken into account:

S
(l)
k = S

(l−1)
k′ RνQµ . (11b)

The type of quincunx matrix is obtained from the index of the
accompanying fan-shaped filter i by µ =

⌊
i
2

⌋
.

4.4. Reconstruction Error

The complete filter bank is merged into one equivalent analysis
filterHk=H

(L)
k and one equivalent synthesis filterGk=G

(L)
k

per direction k by (8). This is used to link the reconstruction
error ‖x̃− x‖ to the filter coefficients pλζ .

Variances of the high-pass image x1 and of the coeffi-
cients yk are linked by the impulse responses hk of the equiva-
lent analysis filters within each channel k:

σ2
yk

= Akσ
2
x1

=

(∑
m∈Z

∑
n∈Z

hk(m)hk(n)
R(m− n)

R(0)

)
σ2
x1
.

(12)
Constant Ak accounts for second order statistics of high-pass
image x1, given by its autocorrelation R, and the influence of
analysis filtering.

During quantization, an error called quantization noise qk
is added to the coefficients yk. It can be modelled approxi-
mately as white uncorrelated noise, whose variance is propor-
tional to the variance of the coefficients yk [14]:

σqk = ε 2−bkσyk . (13)

Constant ε accounts for the type of quantizer and bk specifies
the number of bits spent on the quantized signal ỹk. The ex-
pectation of mean square reconstruction error is the weighted
sum of the quantization noise over all channels:

DCT =
1

N

∑
n∈Z2

E
[
(x̃1(n)− x1(n))2

]
=

K−1∑
k=0

Bkσ
2
qk
.

(14)
Quantization noise qk is thus linked to the expectation of mean
square reconstruction error by the impulse responses of the
analysis filters gk through weighting factor

Bk =
1

K

∑
n∈Z2

g2k(n) . (15)

4.5. Coding Gain

A normalized variant of the error between the original image x
and its compressed counterpart x̃, called coding gain Γ , serves
as an objective function of optimization.

According to (13), quantization noise depends on the num-
ber of bits bk that have been allocated to channels k and the
variance of contourlet coefficients σyk . Those channels that
have a greater variance should be allocated more bits than
others. The optimum number of bits for channel k is

bk opt = b+
1

2
log2

KBkσ
2
yk∏K−1

κ=0

(
KBκσ2

yκ

)1/K (16)

if an average number of bits b is specified [15].
Reconstruction error (14) under the assumption of opti-

mal bit allocation (16) is obtained by combining the analysis
filtering relation (12) with the quantization model (13):

DCT opt =
(
ε 2−bσx1

)2 K−1∏
k=0

(KAkBk)
1/K

. (17)

The reconstruction error (17) is normalized by the error
that would result from direct quantization of the image pixels
DDQ =

(
ε 2−bσx1

)2
to obtain the coding gain [14]

Γ =
DDQ

DCT opt
=

K−1∏
k=0

(KAkBk)
−1/K

. (18)

4.6. Optimization

Coding gain Γ was linked to the coefficients of lifting fil-
ters pλζ by the system model (15), (12), (8), and (7) as well as
via lifting filter symmetries (4) and (5). We implemented these
equations in the functional programming language of Wolfram
Mathematica®. Maximization of coding gain by varying coef-
ficients pλζ is a nonlinear, non-convex optimization problem,
which was solved numerically by a nonlinear conjugate gradi-
ent method using the optimization algorithm of Mathematica®

version 8.0.1.0.



5. RESULTS

Optimized directional filter banks were designed individually
for each of the 52 images consisting of all photos out of the
“Miscellaneous” set of the University of Southern California
SIPI test image database 1 and all photos of the “New Image
Compression Test Set” 2. These images show a broad vari-
ety of themes and vary in size between 256× 256 pixels and
7216× 5412 pixels. Designed filter banks have K = 8 direc-
tional channels and consist of lifting filters with one lifting
step, i. e. Λ = 1, each comprising Z = 3 independent filter co-
efficients. These filter coefficients were subject to optimization
using the method expounded in section 4.

5.1. Convergence

To check whether optimization converges towards a global
maximum, five different sets of pseudo-random numbers in
the range [−1, 1] were used as initial values for filter coefficient
optimization in addition to the coefficients of standard PKVA-
filters. All six optimization runs led to the same maximum for
43 images (83 %), while multiple local maximums are found in
nine images (17 %). For these nine images the highest coding
gain was always found with the standard filters as initial values.

5.2. Coding Performance

The coding performance of the optimized filter banks were
compared to standard PKVA-filters. As an input to the di-
rectional filter banks the high-pass parts of the images, ob-
tained by Laplacian pyramid filtering with Daubechies 9/7
filters, were used. The directional coefficients were approxi-
mated by uniform quantization before synthesis filtering. Fig-
ure 1a depicts mean and standard deviation alongside mini-
mum and maximum of the difference in peak signal-to-noise
ratio (PSNR) between approximated high-pass images using op-
timized filters and the standard filters as a function of entropy
of the transform coefficients. The average performance gap
between standard and optimized filters increase with higher
bit rates, reaching 1 dB for 1.5 bits per pixel.

5.3. Coding Performance within a Hybrid Transform

We examined, whether the advantage of optimized directional
filters also holds within a complete compression processing
chain. The compression algorithm consisted of a three level
hybrid contourlet/wavelet transform, scalar uniform quantiza-
tion, and the arithmetic coder of MATLAB Communications
System Toolbox™ R2013b. On the finest level, an eight direc-
tion contourlet transform with optimized or – for comparison –
standard PKVA-filters were employed. Daubechies 9/7 filters
were used on the coarser, i. e. wavelet, levels and for the Lapla-
cian pyramid. Figure 1b shows that, on average, optimized

1http://sipi.usc.edu/database/
2http://www.imagecompression.info/test images/
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Fig. 1: Differences in image quality between transform with opti-
mized directional filters and standard filters. Mean of results from 52
images (black line), according region bounded by standard deviation
(dark grey area) and range (light grey area). (a) Difference in PSNR
of approximated high-pass images as a function of entropy H of the
transform coefficients. (b) Difference in PSNR of compressed images
using hybrid transform as a function of bit rate b.

filters perform better than standard filters. The PSNR values
for individual images at two exemplary bit rates are listed in
Table 1. For a bit rate of 1.2 bits per pixel, 44 images (85 %)
are better compressed with optimized filters than with stan-
dard directional filters, while for 0.2 bits per pixel the standard
filters are outperformed by optimized filters in 31 cases (60 %).

6. CONCLUSION

A design method for directional filters used in contourlet trans-
form was developed. The design is optimized for image coding
through the use of maximum coding gain as the objective func-
tion. In most cases coding performance of the newly designed
filters is better compared to standard directional filters. The
study shows that directional filter design leaves room for opti-
mization, which can be used e. g. by building filters adapted to
specific classes of images.



PSNR (dB) PSNR (dB) PSNR (dB) PSNR (dB) PSNR (dB) PSNR (dB)
0.2 bits/pixel 1.2 bits/pixel 0.2 bits/pixel 1.2 bits/pixel 0.2 bits/pixel 1.2 bits/pixel

Image Std Opt Std Opt Image Std Opt Std Opt Image Std Opt Std Opt

4.1.01 30.42 30.33 38.69 38.95 5.1.12 27.48 27.48 37.88 37.84 big building 30.90 30.89 40.48 41.13
4.1.02 30.06 30.05 38.70 38.76 5.1.14 25.06 25.05 32.76 32.82 big tree 35.34 35.32 41.72 42.60
4.1.03 34.63 34.66 43.77 43.93 5.2.08 26.85 26.84 35.74 35.63 boat.512 27.72 27.73 35.07 35.18
4.1.04 29.12 29.12 38.77 38.99 5.2.09 24.26 24.25 31.63 32.40 bridge 32.42 32.41 38.61 39.68
4.1.05 29.42 29.46 38.37 38.34 5.2.10 23.67 23.65 29.41 30.02 cathedral 34.63 34.57 42.02 42.90
4.1.06 23.58 23.57 31.00 31.07 5.3.01 28.85 28.87 36.11 36.39 deer 33.43 33.72 36.35 37.43
4.1.07 35.31 35.41 47.13 48.18 5.3.02 26.83 26.93 32.23 32.97 elaine.512 30.34 30.93 35.71 35.67
4.1.08 32.15 32.03 43.26 44.30 7.1.01 30.50 30.50 36.70 37.10 fireworks 39.62 39.52 52.40 53.24
4.2.01 33.89 33.92 40.96 41.02 7.1.02 35.54 35.69 42.31 42.92 flower foveon 45.28 45.19 52.17 52.87
4.2.02 31.19 31.02 38.68 38.35 7.1.03 30.55 30.58 35.41 36.28 hdr 42.00 42.08 51.27 51.50
4.2.03 21.92 21.84 27.95 27.77 7.1.04 31.20 30.95 36.95 37.48 house 26.79 26.80 35.15 35.13
4.2.04 30.52 30.65 38.64 38.88 7.1.05 27.43 27.47 32.59 32.97 leaves iso 200 27.53 27.59 36.69 37.24
4.2.05 29.16 29.17 38.28 38.29 7.1.06 27.55 27.59 32.67 33.26 leaves iso 1600 28.19 28.19 38.61 39.29
4.2.06 26.36 26.42 33.26 34.12 7.1.07 28.54 28.55 33.22 33.96 nights. iso 100 40.20 40.17 50.99 51.13
4.2.07 30.40 30.22 36.92 37.37 7.1.08 32.48 32.58 37.42 38.14 nights. iso 1600 34.43 34.78 39.07 40.81
5.1.09 29.44 29.59 33.73 35.16 7.1.09 28.41 28.44 34.08 34.43 spider web 45.14 45.13 54.08 54.21
5.1.10 22.43 22.44 28.87 29.39 7.1.10 31.74 31.70 36.92 37.68
5.1.11 31.65 31.67 42.54 42.53 7.2.01 33.11 33.43 36.92 37.99

Table 1: Deviation of compressed images to their uncompressed counterparts at bit rates of 0.2 bits per pixel and 1.2 bits per pixel measured by
PSNR for hybrid transform coding with standard filters (Std) and optimized filters (Opt).
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