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ABSTRACT

In this work we propose a grid-based method to estimate the loca-

tion of multiple sources in a wireless acoustic sensor network, where

each sensor node contains a microphone array and only transmits

direction-of-arrival (DOA) estimates in each time interval, minimiz-

ing the transmissions to the central processing node. We present

new work on modeling the DOA estimation error in such a scenario.

Through extensive, realistic simulations, we show our method out-

performs other state-of-the-art methods, in both accuracy and com-

plexity. We present localization results of real recordings in an out-

door cell of a sensor network.

Index Terms— Acoustic sensors, acoustic source localization,

location estimation, microphone arrays, wireless acoustic sensor net-

works

1. INTRODUCTION

The popularity of microphone arrays has led to increased interest

in wireless acoustic sensor networks (WASNs), where a number of

microphones are distributed over an area to provide better spatial

coverage. WASNs are attractive due to their wide variety of applica-

tions in hearing aids, hands-free telephony, acoustic monitoring, and

ambient intelligence [1].

For such applications, information about the location of the

source is an essential, but challenging task due to several con-

straints inherent in a sensor network (time-synchronization, power

and bandwidth limitations, etc). By allowing increased computa-

tional resources in the nodes, the absolute minimum transmission

bandwidth can be attained when each sensor node transmits only

a direction-of-arrival (DOA) estimate to the central processing

node [2, 3]. Moreover, localization using DOA estimates from

multiple microphone arrays “relaxes” the time-synchronization con-

straints as the individual nodes need not be perfectly synchronized.

Solutions to the single source localization problem include lin-

ear estimators [4], and maximum likelihood (ML) approaches [5–7].

However, in many realistic scenarios multiple sources may co-exist

in an area and the location of all sources may need to be known.

The localization of multiple acoustic sources poses many challenges.

First of all, there is the so-called data association problem, where the

central node receiving DOA estimates for multiple sources from the

different sensors cannot know to which source they belong. Erro-

neous DOA combinations will result in “ghost sources” that do not
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correspond to real sources. A solution to this problem was given

in [8] but has been found to be NP-hard when the number of sensors

is greater than two, and the solution of [9] is only suitable for noise-

less scenarios. The work in [10] proposes a solution based on sta-

tistical clustering of the intersection of bearing lines. However, they

consider idealized scenarios of no missed detections and no spurious

measurements. A method using non-linear least squares that tries to

overcome the data association problem is discussed in [11]. How-

ever, ghost sources are not eliminated, leading to severe performance

degradation.

Our previous experience with DOA estimation [12, 13] revealed

that when the sources are close together some arrays may only de-

tect one source, an observation made from experiments using real

recorded signals. As a result, the DOAs of some sources from some

sensors might be missing. This problem of missing DOA estimates

as a function of the sources’ locations is an important aspect which—

to the best of our knowledge—has not been widely examined.

Our work in [14] considered a method for localizing two sources

using far-field DOA measurements in an outdoor WASN. This paper

extends [14] to more than two sources, and proposes a novel grid-

based approach which is an alternative solution to the non-linear

least squares (NLS) estimator. We solve the data association problem

using a sub-optimal—yet computationally efficient—method which

relies on the estimated locations and the corresponding DOA com-

binations. Our approach is real-time and as our simulations and real

experiments show, it loses very little in accuracy.

Our simulations use new results that we present here to model

the DOA estimation error of the algorithm of [13], and consider the

problem of missing DOAs as a function of source location, which

makes them more realistic than simulations considered previously.

The problem of missing DOAs when the sources are close together

occurs often in practice as our real experiments in this paper suggest.

2. THE FRAMEWORK

Our framework is a wireless sensor network whose M nodes are

each equipped with a microphone array—which we will also refer

to as a sensor. This enables each node to generate a DOA estimate

for any sources that it can “hear” (any sources whose signal-to-noise

ratio (SNR) at the node is high enough to be detected). Fig. 1 illus-

trates an example square cell with four nodes—separated by V—and

the DOA estimates to the sources. Note that each node estimates a

direction only with no range information, thus one node’s DOA esti-

mates are not sufficient to obtain absolute positions for the sources.

We assume that the source’s signal radiates as a spherical wave, and

the attenuation it experiences in travelling from r1 meters from the
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Fig. 1. Example cell with four sensor nodes (blue circles, 1 to 4),

and the DOAs (θ1–θ4) to two sources (the red and green circles).

source to r2 meters from the source is [15]

a = 20 log10
r2

r1
dB. (1)

Thus by specifying a signal-to-noise ratio (SNR) at (or very near)

the source, we can determine the SNR at each sensor.

3. LOCALIZING SOURCES FROM

MULTIPLE DOA ESTIMATES

By considering Fig. 1 again, it is clear that in the ideal case—i.e.,

perfect DOA estimates—the sources could be localized by finding

the points where four DOA vectors intersect. In practice—or any re-

alistic simulation—the DOA estimates will not be perfect, and will

not all intersect at the same point. In previous work [14], we pro-

posed an algorithm to solve this based on the centroid of intersection

points of DOA vectors.

Here, we consider a grid-based (GB) method, which is an alter-

native formulation of the NLS estimator of [7], and tries to alleviate

the major weaknesses of that approach, namely the need for a good

initial point to ensure the estimator does not converge to a local min-

imum, and the computational burden of the minimization procedure.

Our approach is based on discretizing the area of interest into

a grid of N points, and then finding the grid point whose DOAs

most closely match the estimated DOAs. Moreover, since our mea-

surements are angles, we propose the use of an Angular Distance—

defined in the following—as a more proper measure of “similarity”

than the absolute distance utilized in [7]. As we will show, this ap-

proach is much more computationally efficient and sacrifices no ac-

curacy. Our grid is thus an (M × N) matrix, Ψ, whose elements,

ψm,n are the DOAs from the m-th sensor to the n-th grid point.

3.1. Single-source localization

Localizing a single source with this method is conceptually very

straightforward: we find the grid point whose DOAs most closely

match the estimated DOAs. However—due to their inherent

modulo-2π nature—in order to properly compare angles, we must

first define an “angular distance” function, A(X,Y ), whose out-

put is constrained to the range [0, π]. An elegant—if somewhat

inefficient—implementation of A(X,Y ) is given by

A(X,Y ) = 2 sin−1 | exp(jX)− exp(jY )|

2
. (2)

With this defined, our problem may then be expressed as

n
∗ = argmin

n

M
∑

m=1

[

A(θ̂m, ψm,n)
]2

, (3)

where θ̂m is the DOA estimate from the m-th sensor. The source

position estimate p̂GB is simply given as the co-ordinates of the n∗-th

grid point.

As a source may be located anywhere within the area of interest,

it should be clear that the resolution of the grid —determined by the

number of grid points, N—will determine the position estimation

error. However, increasing N to decrease the position estimation

error will also increase the complexity of the algorithm. A good

compromise is to use an iterative algorithm that starts with a coarse

grid, and once the best grid point is found, a new grid centered on

this point is generated, with a smaller spacing between grid points,

but also a smaller scope. Then the best grid point in the new grid is

found. This may be repeated until the desired accuracy is obtained,

while keeping the complexity under control.

3.2. Multiple-source localization

As previously discussed, the multiple-source case introduces further

challenges. The processing node receiving the DOA estimates can-

not know to which source they belong, and the localization algorithm

must take this into account. An additional complication is that some

sensor nodes may underestimate the true number of sources, as the

sources’ DOAs may be too close together for that node to discrimi-

nate between them. We call this the minimum angular source sepa-

ration (MASS) of a sensor node, i.e., if the angular distance between

two sources is less than the MASS, then the sensor node will only de-

tect one source. Thus our localization algorithm must deal with the

ambiguity that each DOA estimate may originate from either source,

and that some (or even all) of the sensor nodes may underestimate

the number of sources. Let Cs be the number of sensors that detect

s sources, and S be the highest integer for which Cs 6= 0, i.e., the

highest number of sources detected by at least one sensor. Our mul-

tiple source localization consists of a two-step procedure: in the first

step, an initial candidate location is estimated for each possible com-

bination of DOA measurements, while in the second step, the final

S source locations must be chosen from the candidate locations.

Let J denote the set of all possible unique combinations of DOA

estimates and j enumerate the combinations. The cardinality of J
depends on the number of sources each sensor is able to detect and

can be computed as:

|J | =
S
∑

s=1

s
Cs (4)

As the correct association of the DOAs of each sensor to the

sources cannot be known, the single-source GB method of Sec-

tion 3.1 is applied to each element of J and the set L of candidate

source locations is formed with |L| = |J |. Note that this multi-

ple source localization algorithm increases complexity by at least

|J | − 1 times that of the single source algorithm, highlighting the

need for a computationally efficient method to perform the single-

source localization of each DOA combination. As we show in

Section 4.3, using a standard NLS method here would significantly

increase the computational burden without gaining any increase in

accuracy over our GB method of Section 3.1. In the next step, the

final S source locations must be identified from the set of candidate

locations L by solving the data association problem.



3.2.1. Brute-force approach

A brute-force solution [10] to the data association problem is to per-

form an exhaustive search over all possible S-tuples of DOA com-

binations and select the most likely one. An S-tuple of DOA com-

binations is defined as the list of S DOA combinations (elements of

J ) each of them being anM×1 vector of DOA measurements from

the M sensors. Moreover, in forming an S-tuple, each sensor must

contribute to each of the S DOA combinations with a different esti-

mate, as the same DOA cannot belong to more than one source. In

the case where a sensor has not detected all sources the same DOA

can be repeated. This approach suffers from very high complexity

as the number of tuples that need to be tested can grow as high as

O
(

(S!)M
)

, making this method highly impractical even for a mod-

erate number of sources and sensors.

3.2.2. Sequential approach

Here we propose a computationally efficient approach to solve the

data association problem. This sub-optimal approach relies on a se-

quential procedure to find the S DOA combinations without testing

all the possible S-tuples. Let θ̂(j) be the M × 1 vector of DOAs for

the j-th combination, and let θ̂
(j)
m denote the DOA of them-th sensor

for the j-th combination. Each θ̂(j) is associated with a candidate

source location p(j), and θm
(

p(j)
)

is the DOA of the m-th sensor

from p(j). Our approach can then be stated as:

1. Create a set J ′ = J .

2. For each DOA combination j in the set J ′ compute the residual:

rj =

M
∑

m=1

[

A
(

θ̂
(j)
m , θm

(

p
(j))

)]2

. (5)

3. Choose the DOA combination j∗ with the minimum residual

and output the corresponding location p(j∗) as the location of

one of the sources.

4. Update J ′ by subtracting all DOA combinations that contain

DOAs that are part of the previously chosen combination j∗.

Only DOAs of the sensors that have not detected all sources are

allowed to take part in other combinations.

5. Repeat steps 2–4 until J ′ = ∅, i.e., all S sources have been

found.

Note that this approach does not test all possible S-tuples of DOA

combinations, significantly reducing the computational burden to

that of testing O(|J |) DOA combinations. From (4), this will be

O(SM ) when the MASS is 0◦, and decrease as the MASS increases.

4. RESULTS AND DISCUSSION

To investigate the performance of our proposed method, we per-

formed simulations and real measurements of a square 4-node cell of

a WASN, similar to that of Fig. 1. Although this is just a study of one

cell in a larger sensor network, it is a reasonable assumption that a

cell’s performance will dominate the whole network’s performance.

4.1. DOA Estimation Error Modeling

The DOA estimation error at each sensor was assumed to be nor-

mally distributed with a zero mean and a variance dependent only

on the SNR at each sensor, which was in turn determined by the

length of the path from the source to the sensor. Following the DOA

estimation method of [13], we performed simulations to characterize

the DOA estimation error, using sensors consisting of 4-element cir-

cular microphone arrays with a radius of 2 cm. We assumed an ane-

choic environment and simulated various SNR cases ranging from
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Fig. 2. Modeling the effect of SNR on DOA estimation error stan-

dard deviation for a circular microphone array.
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Fig. 3. Modeling the effect of MASS and SIR on DOA estimation

error for a circular microphone array.

-5 dB to 20 dB. For each SNR, the simulation was repeated with

the source rotated in 1◦ increments around the array to avoid any

orientation biasing effects. Fig. 2 shows the standard deviations

obtained when the DOA estimation error at each SNR was fitted

with a Gaussian distribution. The fitted curve in Fig. 2 is given by

f(x) = 1.979 exp(−0.2815x) + 1.884.

By specifying a reference SNR at the center of the cell, the SNR

at each sensor can then be calculated through geometry and the use

of (1), the DOA estimation standard deviation is then taken from the

fitted curve of Fig. 2. It must be emphasized here that our framework

results in a different SNR and, therefore, a different DOA estimation

error standard deviation at each sensor.

It was also important to model the effect on DOA estimation

when two sources were within the MASS of a sensor. We performed

a simulation study where two sources were set at various separa-

tions of up to 20◦—below the MASS of the method of [13]—and

the energy of the second source was incrementally decreased so the

signal-to-interferer ratio (SIR) seen by the first source varied from 0

dB to 20 dB. These simulations were then repeated with the sources

being rotated around the array in 1◦ increments—whilst preserving

their angular separation—to avoid any orientation biasing effects. In

all simulations only one source was detected and Fig. 3 shows the re-

sults of these simulations, where the DOA error has been normalized

by the separation between the sources. The fitted curve of Fig. 3 is

given by f(x) = 0.5 exp(−0.12987x). It is clear that the detected

source’s DOA is estimated in the middle of the true DOAs when the

sources have equal energy, and moves towards the dominant source

as the weaker source decreases in energy. We used the fitted curve

of Fig. 3 in all simulations involving more than one source.

4.2. Simulation Results

In all simulations, the sources were located anywhere within the

cell with independent uniform probability and the error measure-

ment used was the root mean square error (RMSE) between the es-

timated positions and the true source positions. The methods com-

pared were: (GB) the proposed grid-based method; (IP) our inter-

section point method of [14]; and (P-NLS) the position non-linear

least squares method of [11], which we extended by using the fi-

nal step approaches of Sections 3.2.1 & 3.2.2. We also calculated

the Cramér-Rao lower bound (CRLB) of [3], which we extended to

multiple sources, but could not include here due to space restrictions.
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Fig. 4. Position estimation error as a percentage of cell size V in a square 4-node cell.
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of Sections 3.2.1 & 3.2.2.

Fig. 4(a) & (b) present the results of our simulations of two and

three sources for the idealized case of MASS= 0◦. Both the P-NLS

and GB methods used the brute force approach of Section 3.2.1 for

the final source location selection, and the GB method used initial

and final grids with grid point spacing of 12.5% and 0.25% of the

sensor spacing, respectively. It is very encouraging to see how close

the performance of the GB method is to the lower bound.

Any realistic sensors and DOA estimation algorithm will have a

non-zero MASS, and the performance of all localization algorithms

is expected to degrade significantly as the MASS increases. This

is due to the fact that the accuracy of the algorithms degrades as

CS decreases, and an increasing MASS directly decreases CS, espe-

cially as the number of sources increases. Another way to think of

this is that as the MASS increases, the accuracy of the DOA esti-

mates from each sensor is much more likely to degrade significantly,

due to the “merging” effect illustrated in Fig. 3. In the extreme

case, CS will be zero—i.e., no sensors will detect the true number

of sources—and the localization algorithm will underestimate the

number of source locations. A more realistic case of 20◦ MASS

is presented in Fig. 4(c) & (d), and the degrading effect of the in-

creased MASS is clear, particularly for the three source case. Note

again, that the GB method consistently performs the best.

Fig. 5 presents the difference in performance for the two ap-

proaches of Sections 3.2.1 & 3.2.2 with the GB method for two and

three sources. It is clear that very little performance is lost using the

sequential approach particularly at the higher—and more realistic—

values of MASS. The loss in performance is higher at low values of

MASS, and for the three source case. Although not shown here due

to space considerations, because the P-NLS method must use either

the brute force or the sequential approach, it too suffers a similar

performance loss to that of the GB method. Fig. 5 also illustrates the

effect of MASS on the RMSE, highlighting the importance that the

Table 1. Mean execution times in milliseconds for one set of DOA

estimations
MASS = 0◦ MASS = 20◦

two three two three

Method sources sources sources sources

IP 6.9 44.5 5.3 16.2

GB (& BF) 36.0 2961.6 19.2 214.3

GB (& Seq.) 29.4 162.8 16.8 26.7

P-NLS (& BF) 382.0 5033.4 205.1 509.6

P-NLS (& Seq.) 375.3 2238.8 202.7 322.1

DOA estimation method used has a low MASS, if high accuracy is

required by the system.

4.3. Complexity

All the localization algorithms simulated were implemented in Mat-

lab on a Windows laptop with a Core i5 CPU running at 2.53 GHz

with 4 GB RAM, and their mean execution times are presented in

Table 1. Note that while the absolute execution times may be highly

dependent on the machine, we are only interested here in the rela-

tive times between the methods. The IP method is the fastest, and

the P-NLS method is clearly the slowest, due to the non-linear opti-

mization it requires. Table 1 also highlights the dramatic reduction

in complexity when using the sequential rather than the brute force

approach, particularly in the three source case. Also evident is the

effect of the MASS on the complexity, however these complexity

savings are offset by a reduction in accuracy as the MASS increases,

as discussed in Section 4.2.

These results, together with those of Section 4.2, strongly

suggest that the GB method with the sequential approach of Sec-

tion 3.2.2 is the best choice given its accuracy and moderate com-
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Fig. 6. Position estimates (the red clouds) in a square 4-node cell, of

real recordings of two or three sources (the blue X’s).

plexity. To further verify this suitability, we implemented the GB

method with the sequential approach in C++ and measured that it

only consumed 25% of the available processing time, making it an

excellent candidate for a real-time system.

4.4. Results of Real Measurements

We also performed some real recordings of acoustic sources in a

4-node square cell with sides 4 meters long. The sensors on the

nodes were circular 4-element microphone arrays with a radius of 2

cm, and the DOA estimation was performed by our real-time system

of [12,13]. The sources were recorded speech, played back simulta-

neously through loudspeakers at different locations, and their SNR

at the center of the cell was measured to be about 10 dB. Although a

4× 4 metre square is not a particularly large area, since we measure

our reference SNR at the center of the cell, these results should be

scalable to larger cells. Fig. 6 shows the position estimates from the

real recordings using the proposed grid-based method for different

layouts of two and three sources. The red dots are the cloud of es-

timates over about 5 seconds, and show quite accurate localization.

All of the plots except (d) and (h) used the standard parameter set

of [12, 13] which has a MASS of around 20◦, and it is clear that in

(c) and (g) the source positions are underestimated. By modifying

some of the parameters of the DOA estimation, we were able to de-

crease the system’s MASS so that all the sources in (d) and (h) could

be localized, albeit with a greater variance in the estimates.

It should be noted that these recordings took place outdoors, and

as such did not have many reflections, but there was a significant

level of distant noise sources, such as cars and dogs barking. Fur-

thermore, the orientations of the sensors were not finely calibrated,

and the DOA estimates likely have unintended offsets of a few de-

grees. Thus the conditions were far from ideal, making the results of

our proposed localization method even more encouraging.

5. CONCLUSIONS

In this work we have considered the challenge of localization in a

WASN where each sensor node only transmits direction-of-arrival

estimates, minimizing the transmissions to the processing node. We

considered some real problems in this scenario, such as accurately-

modeled DOA estimation error, and the merging of two DOA

estimates that are very close together. We presented a real-time,

grid-based method to perform the position estimation of multiple

sources along with a sequential approach to the final source loca-

tion selection. Through extensive simulations and measurements

we showed that our proposed method outperforms the other state-

of-the-art methods considered in both accuracy and computational

complexity.
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