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ABSTRACT

This work presents a novel method to estimate natural ex-
pressed emotions in speech through binary acoustic model-
ing. Standard acoustic features are mapped to a binary value
representation and a support vector regression model is used
to correlate them with the three-continuous emotional dimen-
sions. Three different sets of speech features, two based on
spectral parameters and one on prosody are compared on the
VAM corpus, a set of spontaneous dialogues from a German
TV talk-show. The regression analysis, in terms of correla-
tion coefficient and mean absolute error, show that the binary
key modeling is able to successfully capture speaker emotion
characteristics. The proposed algorithm obtains comparable
results to those reported on the literature while it relies on a
much smaller set of acoustic descriptors. Furthermore, we
also report on preliminary results based on the combination
of the binary models, which brings further performance im-
provements.

Index Terms— Emotion modeling, binary fingerprint,
VAM corpus, dimensional emotions

1. INTRODUCTION

Emotional expression is a natural modulator of human inter-
actions in speech communications. Empathy in a conversa-
tion and effective social interaction depends upon the ability
to accurately perceive and express emotions. Most of the cur-
rent work in emotion recognition assumes a categorical rep-
resentation of emotions [1, 2], formulated as a classification
task. This is not in alignment with the psychology theory that
claims for the importance of a continuous emotional space
analysis [3]. Nonetheless, acoustic analysis of the signal must
take into account models defining the sentiments being mea-
sured in a continuous way rather than mapped to discrete cat-
egories [4]. To our knowledge, the first study to directly cor-
relate speech with the continuous emotion dimensions is pre-
sented in [5,6]. They employed a set of features derived from
the pitch and the energy contour of the speech waveform and
others related to speaking rate and spectral characteristics of
the signal, leading to a total of 46 features, which were then
modeled using a Support Vector Regression (SVR) model. A

similar experiment but with a different set of features was also
reported in [7].

Up to now, among the different works present in the lit-
erature, there is no a common agreement on the acoustic fea-
ture sets and modeling techniques most suitable for the repre-
sentation and modeling of human emotions. Such a situation
is likely the consequence of the limited amount of emotion-
tagged data and the variety of speech databases employed for
characterizing emotions which do not account for speaker and
session variability [1, 8]. Nevertheless, some configurations
are more preferred than others. On the modeling side, the use
of Support Vector Machine (SVM) classifiers with radial ba-
sic function seems to outperform other techniques [1,6] due to
their robustness to over-fitting and their discriminative power.
On the feature selection side, recent comparisons at Inter-
speech challenges [9] have proven that MFCC are among the
most suitable descriptors for recognizing emotions in speech.
In [8, 10] extensive studies of emotional speech data and the
effects on the selection of the set of features are reported.

In this paper we evaluate the use of an SVR modeling
approach in the binary domain by first “binarizing” the in-
put features to obtain a single binary fingerprint per input ut-
terance. The binarization of the feature space, initially pro-
posed in [11] for speaker recognition, has been successfully
applied to categorical emotion recognition in [12] and is the
first time that it is applied for continuous emotion recognition.
To test the proposed system we experiment with three differ-
ent sets of acoustic features. These are the standard spectral
low-MFCC features, source excitation features extracted from
Linear Prediction Coding (LPC) residual signal and prosodic
features derived from pitch. We show that even though such
features are of much lower dimensionality than standard fea-
ture sets used recently for the task [13] and only represent
a very local time-portion of the signal, by using binarization
we are able to indirectly incorporate long term information
and successfully model emotions. Furthermore, given that
the emotion fingerprints are represented by a binary vector it
is much simpler to interpret how an emotion is represented
(and differs from others) and see the differences between dif-
ferent emotions.

Experimental results on the VAM corpus [14] show that
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Fig. 1: Binary emotion regression system, comprised of three
main modules: 1) Background model training; 2) emotion re-
gression training; 3) cross-validation

our approach achieves comparable results to those reported in
the literature [7,14], but using a frame-based feature approach
and a novel binary modeling technique.

2. EMOTION MODELING

The proposed approach for continuous modeling of emotions
(also referred as emotion regression) builds upon the acous-
tic binary fingerprints initially proposed in [11] for speaker
recognition and adapted in [12] for emotion classification.
Figure 1 shows the main modules involved in the emotion
regression system, both for training and for validation.

In the training phase a set of acoustic utterances needs to
be provided together with their perceived emotional values.
In this paper we use the VAM corpus [14], which consists of
training utterances labelled by 6 independent labelers in terms
of Valence, Activation and Dominance. Each utterance is first
processed to obtain a set of acoustic features, as explained
in section 2.1. Then, a single binary fingerprint is computed
from the whole utterance by using one or several background
models, as described in Section 2.2. With these binary sam-
ples we train an SVR model [15] to estimate a regression for
each of the emotional dimensions. In the validation phase,
test utterances are first mapped into a binary fingerprint in
the same way as we map training utterances. Then, using the
SVR model, the output emotional values are guessed. Fol-
lowing we give a detailed description of each of these steps.

2.1. Acoustic Feature Extraction

Three different sets ! of acoustic features have been used in
this work:

1. A set of 12 low-band MFFC (ranging from 20Hz to
350Hz) are extracted from 24 Mel-scaled logarithmic
filters and augmented with log-energy. In addition, the
derivative and acceleration of all features is taken, obtain-
ing a total of 39 MFCC coefficients. These are extracted

I'MFCC and pitch related features has been computed using HTK and
Praat software packages

every 10ms with a standard analysis window of 25ms. We
expect these MFCCs to model FO variations, as localized
correlation exists between fundamental frequency and
spectral envelope [16].

2. Standard MFCC features (same configuration as above,
but for the full signal bandwidth) are obtained from the
residual signal resulting from the Linear Prediction mod-
eling (using 12 LPC coefficients) of the original speech
wave. We expect them to model non-linear FO variations
and contribute with an extra amount of formant informa-
tion modeling that is not present in conventional MFCC
coefficients.

3. A short-time pitch estimation based on an autocorrelation
method on the voiced regions of speech [17]. In addition,
we also extract the log-energy, the derivative and accelera-
tion of the pitch feature, resulting in a six dimensional fea-
ture vector. We expect these to capture traits of the acous-
tic realization of prosody by variations of the fundamental
frequency. These features are standardized through mean
and standard deviation estimated per speaker.

Low-band MFCC features have been reported to perform
better in emotion recognition tasks than wide-band MFCC or
pitch related features [18], whereas short-time suprasegmen-
tal features are believed to highly correlate with emotions. For
this reason we decided to extract the three feature sets and to
compare their performance when obtaining their binary fin-
gerprints.

Given an input training or test utterance, either one of the
feature sets is extracted and then converted into a single bi-
nary fingerprint, as explained in Section 2.2. In the experi-
mental section we compare the performance of each set for
different background model sizes.

2.2. Fingerprints Extraction
The process which maps a set of M acoustic feature vec-
tors, extracted from an input utterance, into a single binary
vector [11] involves the training of an acoustic background
model. This model has been previously estimated by means
of unlabeled data similar to that we later use in the test via
unsupervised EM-ML training. The number of Gaussian mix-
tures N in this model define the dimension of the output bi-
nary vector (fingerprint). Intuitively, the active bits in the fin-
gerprint indicate where in the acoustic space the acoustic data
is mostly found. The proposed method shares some details
with the UBM weight posterior probability (UWPP) method
proposed in [19,20]. In such method, occupancy posterior
probabilities per Gaussian are stacked in a supervector which
feeds a classifier. In our approach we just select the most
informative posteriors in order to map them to value 1 in a
binary vector. Through experimentation we have seen our
method to be less affected by noise.

In order to obtain the binary fingerprint we first convert
all acoustic feature vectors x;,7 = 1...M, representing a
given emotion value (see fig. 3), into binary form. It is done



by selecting the 5 Gaussians? in the background model with
highest posterior probability (P(x;|A;),7 = 1...N), where
7 stands for the Gaussian number in the UBM model. Next
we combine the information obtained by each individual fea-
ture vector into a single binary fingerprint. This is done with
a vector of counts v, where each position counts how many
times each Gaussian in the background model has been se-
lected by any of the individual feature vectors. Note that v,
contains a total number of counts equal to 5 times M, con-
taining a histogram of which Gaussians are most relevant to
model the input data. Note also that each input feature vector
casts the same number of votes independently from the other
features. This is useful to cope with heterogeneous informa-
tion usually present in the speech signal (e.g. small silence
regions or acoustic artifacts) other than the speech that we de-
sire to model. Finally, we convert the vector of counts v, into
binary form by choosing the 25%-highest count dimensions
to become 1, setting to O the rest. This threshold was em-
pirically chosen as higher values resulted in lower regression
performances.

Through this binary fingerprint we are averaging the infor-
mation obtained at feature level regarding where in the acous-
tic space the input features mostly occur. This can be consid-
ered equivalent to the averaging performed by state-of-the-
art emotion recognition systems. These systems represent the
whole utterance using several functionals computed from the
set of acoustic features extracted from the signal, like in our
case, at short-term intervals. The main difference here is that
each bit in the fingerprint directly represents the activation
status of a given Gaussian in the background model, where
each Gaussian represents a region in the acoustic space. We
can therefore directly obtain a relationship of which acoustic
regions are most prevalent for each one of the emotions, being
able to easily interpret results.

In addition to building a binary fingerprint from the input
acoustic features and a given background model, we have also
experimented with stacking the fingerprints from background
models of different sizes. As we will show in the experimental
section, the sampling of the acoustic space at different reso-
lutions is able to further improve the final results.

2.3. Regression Modeling and Estimation

As explained in Section 2.2, a fingerprint vector is computed
for each set of observations representing an emotional state
value. Therefore, each value in the emotional dimension, if
exists in the training set, is encoded by means of a binary vec-
tor. To investigate whether the fingerprint modeling stands for
a good representation of emotions into the 3-D representation
model, we train regression models that map the fingerprint
features to their corresponding emotion dimension value. The
figure 3 depicts the histogram of values per each emotional
dimension.

2We have chosen to select 5-best after experimenting with different num-
ber of selected Gaussians
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Fig. 3: From left to rigth, histogram of the emotional dimen-
sion values in the VAM corpus per valence, arousal and dom-
inance dimensions respectively.

The goal here is to estimate a function f: BY — R, where
B represents the whole set of binary vectors and N stands for
the complexity of the background model, that is, the dimen-
sion of the fingerprint vector. In order to estimate such a func-
tion we employed support vector regression. Concretely, non-
linear e-regression that, unlike least square regression, defines
the error function to minimize as a e-insensitive loss func-
tion [15]. The kernel employed is a radial basis function. Note
that the main difference in our implementation compared to
that of [6, 7] are both the high number of heterogeneous fea-
tures employed and that the SVR models binary fingerprints
instead of low level descriptors or functionals. It is worth to
note that in [7] the authors used a polynomial kernel func-
tion of degree 1. As can be seen in the experimental section,
the fingerprint vector, which summarizes the statistics of the
original frame-based data into a single binary representation,
highly correlates with the values in the emotional 3-D model.

Experiments are performed using a 10-fold cross valida-
tion (CV) scheme, as in [6, 7], for each feature set indepen-
dently but selecting folds randomly. It is also worth to men-
tion that a grid search around standard values is performed to
estimate C and o parameters using a different 10-fold cross
validation where folds are also randomly selected. Once C
and o are fixed, the regression coefficient p is mean-averaged
among validation folds in the final 10-fold CV stage.

3. EXPERIMENTAL SECTION

3.1. Database and metrics

In order to evaluate the proposed system we used the VAM
corpus [14]. It consists of 12 hours of audio-visual record-
ings of the German TV talk show “Vera am Mittag”. The au-
dio stream, originally sampled at 44.1 kHz was downsapled at
16 kHz previous to the feature extraction step. The database
contains 47 speakers, 36 female voices and 11 male voices
segmented into broadcasts, dialogue acts and utterances. A
total of 1002 different sentences were evaluated by human
listeners® using self assessment manikins methodology [5] in
order to obtain the values in the continuous emotional dimen-
sions, that is, in terms of valence, activation and dominance.

3VAM corpus was labelled by 6 evaluators and the inter-evaluator agree-
ment was measured by determining the standard deviation and correlation
coefficient among them. See [5].
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Table 1: Mean correlation coefficient and mean regression error (in
brackets) of the fingerprint-SVR regression estimation on the VAM
corpus. First and second rows correspond to the results reported
by [6,7]. Next rows summarize the results reached by the best back-
ground model size depending on mean correlation curves in figure 2.

Activation Dominance  Valence
M. Grimm et al. [6] | 0.82 (0.15) 0.79 (0.14) 0.46 (0.13)
F. Eyben et al. [7] .83 (0.15) - (=) 0.42 (0.14)
low-MFCC stacked | 0.80 (0.16) 0.85 (0.13) 0.41 (0.13)
low-MFCC 0.79 (0.18) 0.75 (0.17) 0.45 (0.14)
LPC residual .75 (0.19) 0.68 (0.19) 0.42 (0.14)
pitch+E+A+D 0.56 (0.24) 0.51 (0.22) 0.23 (0.16)

The performance of the binary fingerprint approach is as-
sessed through the mean estimation error and the mean corre-
lation coefficient, computed as the average of each validation
fold in cross-validation. Both measures offer us an indication
of the predictive ability for the fingerprint-SVR model.

3.2. Experiments

The figures in 2 show the mean correlation coefficient ob-
tained in cross-validation experiments for the three emotion
dimensions. Different results are depicted depending on both
the complexity of the background model (i.e. the number of
Gaussians), and the feature set employed to parametrize the
speech data.

A summary of the results for the best setting and for the
different feature sets is summarized in table 1. Similar error
values to the ones reported in [6] are obtained by the proposed
binary approach, with slightly lower correlation coefficients
and mean regression errors. In some cases, as in dominance
dimension, results reported outperform those in [6]. Also
in the dominance dimension the binary fingerprint estimated
from low-MFCC features clearly outperforms the other two

sets of LPC and pitch based features. Nonetheless, the cor-
relate values of LPC-residual features are close to those from
the low-MFCC for the activation and valence dimensions. In
general, we observe a poor performance of the pitch related
feature set in the whole set of the experiments.

The best results, in terms of correlation and regression er-
ror, are reached by the combination of low-MFCCs features
coming from three individual fingerprints. In the low-MFCC
stacked system the regression analysis is performed on the
combined fingerprint vector. The best model error and cor-
relation values for this approach are reported in table 1 and
correspond to blue-diamond points in the figure 2. It is a
stacked low-MFCC fingerprint vector with a total of 1792
binary values corresponding to aggregate the fingerprints of
sizes 1024, 512 and 256. In addition, 2-best combinations are
also drawn in the figures. Over all, the mean regression error
lies in between 0.13 and 0.16 and the mean-averaged correla-
tion for the three dimensions is 0.69, similar values than those
reported in [6].

3.3. Discussion
From table 1 we observe that the lowest correlation coeffi-
cient corresponds to the valence dimension, although the as-
sociated mean regression error is lower than that for the other
dimensions. It is due to the range of differences in the valence
dimension, which presents a very narrow histogram in com-
parison to activation and dominance histograms, as shown in
figure 3. The performance of the fingerprint for MFCCs and
LPCs, in figure 2, seems to saturate once the complexity of the
background model reaches 2048 Gaussians. Such a behavior
might be due to the small size of the speech corpus and we
expect a higher saturation point in the case more training sam-
ples were available. At the same time, the poor performance
depicted by pitch related features might be due to the few
number of features employed. We extract pitch and log-pitch
and the corresponding derivatives yielding to a 6-dimension
feature vector whereas two other feature sets employ more
than 40 dimensions.

Overall, results obtained in the experimental section sup-



port that modeling of dimensional emotions by means of bi-
nary fingerprint vectors obtains similar results to previous pa-
pers while it relies on a small set of frame-based acoustic fea-
tures. We believe that the binary fingerprinting strategy, due
its low-complexity and easy scalability, is a firm candidate
to be used for a continuous and low cost approach in auto-
matic emotion recognition systems, especially for low com-
putational power devices.

4. CONCLUSIONS

A novel method has been presented in this paper for estimat-
ing natural vocal expressed emotions based on binary vec-
tors modeling. Experiments reported on the VAM emotional
speech corpus, in terms of regression coefficient and mean re-
gression error, show that the binary fingerprint technique is
able to successfully capture emotion traits that significantly
correlate with ground-truth values across the three emotional
dimensions analyzed. In this paper we have performed ex-
periments with three different sets of input speech features.
Results show that frame-based low-band MFCC acoustic fea-
tures are good candidates to capture emotional cues in vocal
expressed emotions. Furthermore, we have also reported pre-
liminary results based upon the combination of binary mod-
els, which is an inexpensive and meaningful strategy to com-
bine cues from different acoustic resolutions.
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