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ABSTRACT

Stochastic optimization plays an important role in solving many

problems encountered in machine learning or adaptive processing.

In this context, the second-order statistics of the data are often un-

known a priori or their direct computation is too intensive, and they

have to be estimated on-line from the related signals. In the context

of batch optimization of an objective function being the sum of a

data fidelity term and a penalization (e.g. a sparsity promoting func-

tion), Majorize-Minimize (MM) subspace methods have recently

attracted much interest since they are fast, highly flexible and effec-

tive in ensuring convergence. The goal of this paper is to show how

these methods can be successfully extended to the case when the

cost function is replaced by a sequence of stochastic approximations

of it. Simulation results illustrate the good practical performance of

the proposed MM Memory Gradient (3MG) algorithm when applied

to 2D filter identification.

Index Terms— stochastic approximation, optimization, sub-

space algorithms, memory gradient methods, descent methods, re-

cursive algorithms, majorization-minimization, filter identification,

Newton method, sparsity, machine learning, adaptive filtering.

1. INTRODUCTION

We consider a sequence of random variables (Xn,yn)n>1

taking their values in R
N×Q × R

Q, defined on a probabil-

ity space (Ω,F,P). Our objective is to solve the following

minimization problem:

minimize
h∈RN

F (h) (1)

where

(∀h ∈ R
N ) F (h) =

1

2
E
(
‖yn −X⊤nh‖2

)
+Ψ(h). (2)

Throughout this paper, E(·) denotes the mathematical expec-

tation, ‖·‖ is the Euclidean norm, andΨ is a function fromR
N

to R, which plays the role of a regularization function. In par-

ticular, this function may be useful to incorporate some prior

knowledge about h, e.g. some sparsity requirement, possi-

bly in some transformed domain. We assume here that the

following wide-sense stationarity properties hold:

(∀n ∈ N
∗) E(‖yn‖2) = ̺ (3)

E(Xnyn) = r (4)

E(XnX
⊤
n ) = R (5)

where ̺ ∈]0,+∞[, r ∈ R
N , and R ∈ R

N×N is a symmetric

positive semi-definite matrix.

Many optimization algorithms can be devised to solve

Problem (1) depending on the assumptions made on Ψ
[1, 2, 3]. In this work, we will be interested in Majorize-

Minimize (MM) subspace algorithms [4]. These approaches

proceed by building at each iteration a simple majorant (e.g. a

quadratic majorant) of the cost-function, which is minimized

in a subspace of low dimension. This subspace is often re-

stricted to the gradient computed at the current iterate and to

a memory part (e.g. the difference between the current iterate

and a previous one). In a number of recent works [5, 6, 7],

these algorithms are shown to provide fast numerical solu-

tions to optimization problems involving smooth functions,

in particular in the case of large-scale problems. Note that,

although our approach will assume that Ψ is a differentiable

function, it has been shown that tight approximations of non-

smooth penalizations such as ℓ1 (resp. ℓ0) functions, namely

ℓ2 − ℓ1 (resp. ℓ2 − ℓ0) functions, can be employed and are

often quite effective in practice [6, 7]. Another advantage of

the class of optimization methods under investigation is that

their convergence can be established under some technical as-

sumptions, even in the case when Ψ is a nonconvex function

(see [6] for more details).

One of the difficulties encountered in machine learning

or adaptive processing is that Problem (1) cannot be directly

solved since the second-order statistical moments ̺, r and R

are often unknown a priori or their direct computation is too

intensive, and they have thus to be estimated on-line from the

related time series. In the simple case when Ψ = 0, the classi-

cal Recursive Least Squares (RLS) algorithm can be used for

this purpose [8]. When Ψ is nonzero, stochastic approxima-

tion algorithms have been developed such as the celebrated

stochastic gradient descent (SGD) algorithm [9]. This algo-

rithm has been at the origin of a tremendous amount of works.

It is known to be robust and easy to implement, but its con-



vergence speed may be relatively slow. Various extensions of

this algorithm have been developed to alleviate this problem

[10, 11], to make it adaptive, or to improve its performance

when estimating sparse vectors [12, 13]. When Ψ ∝ ‖ · ‖1,
an on-line variant of the RLS algorithm was designed in [14]

which relies on a coordinate descent approach.

Designing Majorize-Minimize optimization algorithms in

a stochastic context constitutes a challenging task since most

of the existing works have been focused on batch optimiza-

tion procedures, and the related convergence proofs usually

rely on deterministic tools. We can however mention a few

recent works [15, 16] where stochastic MM algorithms are

investigated for general loss functions under an independence

assumption on the involved random variables, but without

introducing any search subspace. Works which are more

closely related to ours are those based on Newton or quasi-

Newton stochastic algorithms [17, 18, 19, 20], in particular

the approaches in [19, 20] provide extensions of BFGS al-

gorithm, but proving the convergence of these algorithms

requires some specific assumptions. Like BFGS algorithm,

MM subspace methods use a memory of previous estimates

so as to accelerate the convergence.

In Section 2, we show how Problem (1) can be refor-

mulated in a learning context. The MM strategy which is

proposed in this work is described in Section 3.1. In Sec-

tion 3.2, we give the form of the resulting recursive algorithm

and, in Section 3.3, we evaluate its computational complexity.

In Section 4, we show the good performance of the proposed

stochastic Majorize-Minimize Memory Gradient (3MG) al-

gorithm for solving a two-dimensional filter identification

problem. Some conclusions are drawn in Section 5.

2. PROBLEM FORMULATION

In a learning context, function F can be replaced by a se-

quence (Fn)n>1 of stochastic approximations of it, which are

defined as: for every n ∈ N
∗,

(∀h ∈ R
N ) Fn(h) =

1

2n

n∑

k=1

‖yk −X⊤k h‖2 +Ψ(h)

=
1

2
ρn − r⊤nh+

1

2
h⊤Rnh+Ψ(h)

(6)

where ρn, rn, andRn are the following classical sample esti-

mates of ̺, r, andR:

ρn =
1

n

n∑

k=1

‖yk‖2 (7)

rn =
1

n

n∑

k=1

Xkyk (8)

Rn =
1

n

n∑

k=1

XkX
⊤
k . (9)

Our objective in the next section will be to propose an efficient

method for minimizing Fn, for every n ∈ N
∗.

3. PROPOSED METHOD

3.1. Majorization property

At each iteration n ∈ N
∗, we propose to replace Fn by a

surrogate function Θn(·,hn) based on the current estimate

hn (computed at the previous iteration). More precisely, a

tangent majorant function is chosen such that

(∀h ∈ R
N ) Fn(h) 6 Θn(h,hn) (10)

Fn(hn) = Θn(hn,hn). (11)

For the so-defined MM strategy to be worthwhile, the sur-

rogate function has to be built in such a way that its mini-

mization is simple. For this purpose, we will assume that the

regularization function Ψ has the following form:

(∀h ∈ R
N ) Ψ(h) =

1

2
h⊤V0h−v⊤0 h+

S∑

s=1

ψs(‖Vsh−vs‖)

(12)

where v0 ∈ R
N , V0 ∈ R

N×N is a symmetric positive semi-

definite matrix, and, for every s ∈ {1, . . . , S}, vs ∈ R
Ps ,

Vs ∈ R
Ps×N , and ψs : R → R. In addition, the following

assumptions will be made:

Assumption 1.

(i) R+ V0 is a positive definite matrix.

(ii) For every s ∈ {1, . . . , S}, ψs is a lower-bounded dif-

ferentiable function and limt→0
t 6=0

ψ̇s(t)/t ∈ R, where ψ̇s

denotes the derivative of ψs.

(iii) For every s ∈ {1, . . . , S}, ψs(
√
.) is concave on

[0,+∞[.

(iv) There exists υ ∈ [0,+∞[ such that (∀s ∈ {1, . . . , S})
(∀t ∈]0,+∞[) 0 6 υs(t) 6 υ, where (∀t ∈ [0,+∞[)
υs(t) = ψ̇s(t)/t.

1

These assumptions are satisfied by a wide class of func-

tions Ψ, in particular quadratic regularization functions,

ℓ2 − ℓ1 functions, and various forms of smooth ℓ2 − ℓ0
functions [6].

Note that, for every n ∈ N
∗, the gradient of Fn is given

by

(∀h ∈ R
N ) ∇Fn(h) = An(h)h− cn(h) (13)

1The function is extended by continuity when t = 0.



where

An(h) = Rn + V0 + V ⊤Diag
(
b(h)

)
V ∈ R

N×N (14)

cn(h) = rn + v0 + V ⊤Diag
(
b(h)

)
v ∈ R

N (15)

V = [V ⊤
1 . . .V ⊤

S ]⊤ ∈ R
P×N (16)

v = [v⊤1 . . .v
⊤
S ]⊤ ∈ R

P (17)

with P = P1 + · · · + PS , and b(h) =
(
bi(h)

)
16i6P

∈ R
P

is such that (∀s ∈ {1, . . . , S}) (∀p ∈ {1, . . . , Ps})

bP1+···+Ps−1+p(h) = υs(‖Vsh− vs‖). (18)

We have then the following result:

Proposition 1. Under Assumptions 1(ii)-1(iv), for every n ∈
N
∗ and h ∈ R

N , a tangent majorant of Fn at h is

(∀h′ ∈ R
N ) Θn(h

′,h) = Fn(h) +∇Fn(h)
⊤(h′ − h)

+
1

2
(h′ − h)⊤An(h)(h

′ − h)

(19)

where An(h) is given by (14).

The proposed MM subspace algorithm consists of defin-

ing the following sequence of random vectors (hn)n>1:

(∀n ∈ N
∗) hn+1 ∈ argmin

h∈spanDn

Θn(h,hn) (20)

where spanDn is the vector subspace delineated by the

columns of matrixDn ∈ R
N×Mn , and h1 has to be set to an

initial value. For example, we can choose, for every n ∈ N
∗,

Dn =

{
[−∇Fn(hn),hn,hn − hn−1] if n > 1

[−∇Fn(h1),h1] if n = 1
(21)

which yields the 3MG algorithm. Note that a similar choice

of subspace can be found in optimization algorithms such as

TWIST [21]. A common assumption for subspace algorithms

which will be adopted subsequently is that∇Fn(hn) belongs
to spanDn.

3.2. Recursive MM strategy

By setting, for every n ∈ N, hn+1 = Dnun where un is an

R
Mn -valued random vector, we deduce from (13), (19) and

(20) that

un = B†nD
⊤
n

(
An(hn)hn −∇Fn(hn)

)

= B†nD
⊤
n cn(hn) (22)

where

Bn = D⊤nAn(hn)Dn (23)

and (·)† is the pseudo-inverse operation. It is important to

note that, asBn is of dimensionMn×Mn whereMn is small

(typicallyMn = 3), this pseudo-inversion is not costly. This
constitutes the main advantage of the proposed approach.

Let us now introduce the intermediate variables:

(∀n ∈ N
∗) DR

n = RnDn ∈ R
N×Mn (24)

DV0

n = V0Dn ∈ R
N×Mn (25)

DV

n = V Dn ∈ R
P×Mn (26)

DA

n = An+1(hn+1)Dn ∈ R
N×Mn . (27)

By using (8), (9), (13) (14), (15), (22), (23), and by perform-

ing recursive updates of (rn)n>1 and (Rn)n>1, Algorithm 1

is obtained.

Algorithm 1 Stochastic MM subspace method

r0 = 0,R0 = 0

Initialize D0,u0

h1 = D0u0,D
R
0 = 0,DV0

0 = V0D0,D
V
0 = V D0

For all n = 1, . . .

rn = rn−1 +
1
n (Xnyn − rn−1)

cn(hn) = rn + v0 + V ⊤Diag
(
b(hn)

)
v

DA
n−1 = (1− 1

n )D
R
n−1 +

1
nXn(X

⊤
nDn−1)

+DV0

n−1 + V ⊤Diag
(
b(hn)

)
DV

n−1

∇Fn(hn) = DA
n−1un−1 − cn(hn)

Rn = Rn−1 +
1
n (XnX

⊤
n −Rn−1)

SetDn using ∇Fn(hn)
DR

n = RnDn,D
V0

n = V0Dn,D
V
n = V Dn

Bn = D⊤n
(
DR

n +DV0

n + V ⊤Diag
(
b(hn)

)
DV

n

)

un = B†nD
⊤
n cn(hn)

hn+1 = Dnun

3.3. Complexity

Since Mn is small, the complexity of a direct implementa-

tion of this algorithm, evaluated in terms of multiplications at

iteration n, is of the order of

N
(
P (3Mn + 1) +N(4Mn +Q)/2

)

when N is large. However, this complexity can be reduced

if matrices V0 or V have a specific structure. In particular,

if they are null matrices, the algorithm has the same order

of complexity as the classical recursive least squares algo-

rithm. Since the criterion then reduces to a quadratic function,

Sherman-Morrison-Woodbury formula can be used in order to

calculate iteratively the minimizer on the whole space in an

efficient manner. The computational complexity can also be

reduced by taking advantage of the specific form of matrices

(Dn)n>1. For example, if the subspace is chosen according

to (21), for every n > 1,

DV

n = [−V ∇Fn(hn),V hn,V hn − V hn−1]. (28)



On the other hand,

V hn = V Dn−1un−1 = DV

n−1un−1, (29)

which shows that a recursive formula holds to compute the

last two components ofDV
n in (28). The initial complexity of

3PN multiplications is thus reduced to (P + 3)N . Similar

recursive procedures can be employed to compute (DV0

n )n>1

and (DRn

n )n>1.

4. APPLICATION TO 2D FILTER IDENTIFICATION

4.1. Problem statement

We now demonstrate the efficiency of the proposed stochas-

tic algorithm in a filter identification problem. Consider the

following observation model:

y = S(h)x+w, (30)

where x ∈ R
L and y ∈ R

L represent the original and de-

graded version of a given image, h ∈ R
N is the vector-

ized version of an unknown two-dimensional blur kernel, S
is the linear operator which maps the kernel to its associated

Hankel-block Hankel matrix form, and w ∈ R
L represents

a realization of an additive noise. When the images x and y

are of very large scale, finding an estimate ĥ ∈ R
N of the

blur kernel can be very memory consuming, and one can ex-

pect good estimation performance by learning the blur kernel

through a sweep of blocks of the dataset.

Let us denote by X ∈ R
L×N the matrix such that

S(h)x = Xh. Then, we propose to define ĥ as a solution

to (1), where, for all n ∈ N
∗, yn ∈ R

Q and X⊤n ∈ R
Q×N ,

are subparts of y and X , respectively, corresponding to

Q ∈ {1, . . . , L} lines of this vector/matrix. For the regu-

larization term Ψ, we consider, for every s ∈ {1, . . . , N}
(S = N ), an isotropic penalization on the gradient between

neighboring coefficients of the blur kernel, i.e., Ps = 2 and

Vs =
[
∆h

s ∆v
s

]⊤
, where∆h

s ∈ R
N (resp. ∆v

s ∈ R
N ) is the

horizontal (resp. vertical) gradient operator applied at pixel s.
The smoothness of h is then enforced by choosing, for every

s ∈ {1, . . . , S} and u ∈ R, ψs(u) = λ
√

1 + u2/δ2 with

(λ, δ) ∈]0,+∞[2. Finally, in order to guarantee the existence
of a unique minimizer, the strong convexity of F is imposed

by taking v0 = 0 and V0 = τIN , where τ is a small positive
value (typically τ = 10−10).

4.2. Simulation results

The original image, presented in Figure 1(a), is the San

Diego image, of size 1024 × 1024 pixels, available at

http://sipi.usc.edu/database/. The original blur kernel h

with size 21× 21, and the resulting blurred image, which has
been corrupted with a zero-mean Gaussan noise with stan-

dard deviation σ = 0.03 (blurred signal-to-noise ratio equal

to 24.8 dB), are displayed in Figures 1(b)(c). Figure 1(d)

presents the estimated kernel, using the proposed stochastic

algorithm with the subspace given by (21). Parameters (λ, δ)
were adjusted so as to minimize the normalized root mean

square estimation error, here equal to 0.087. Figure 2 illus-
trates the variations of the estimation error with respect to

the computation time for the proposed algorithm, the SGD

algorithm with a decreasing stepsize proportional to n−1/2,

and the regularized dual averaging (RDA) method with a con-

stant stepsize from [15], when running tests on an Intel(R)

Core(TM) i7-3520M @ 2.9GHz using a Matlab 7 implemen-

tation. Note that for the latter two algorithms, the stepsize

parameter was optimized manually so as to obtain the best

performance in terms of convergence speed. Finally, note

that stochastic 3MG and RDA algorithms were observed to

provide asymptotically the same estimation quality, whatever

the size of the blocks. In this example, the best trade-off in

terms of convergence speed is obtained for Q = 64× 64.

(a) (b)

(c) (d)

Fig. 1. (a) Original image. (b) Blurred and noisy image. (c)

Original blur kernel. (d) Estimated blur kernel, with relative

error 0.087.

5. CONCLUSION

In this work, we have proposed a stochastic MM Memory

Gradient algorithm for on-line penalized least squares estima-

tion problems. The method makes it possible to use large-size

datasets the second-order moments of which are not known a
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Fig. 2. Comparison of stochastic 3MG algorithm (solid

black line), SGD algorithm with decreasing stepsize ∝ n1/2

(dashed-dotted red line) and RDA algorithm with constant

stepsize (dashed blue line).

priori. We have shown that the proposed algorithm is of the

same order of complexity as the classical RLS algorithm and

that its computational cost can be even reduced by taking ad-

vantage of specific forms of the search subspace. The good

numerical performance of the proposed algorithm has been

demonstrated in the context of 2D filter identification for large

size images. In our future work, a theoretical analysis of the

convergence properties of the proposed method will be con-

ducted. In addition, we plan to apply this technique to system

identification or inverse modeling using adaptive filters.
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