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ABSTRACT
In this work, we use a stochastic diffusion equation for the
reconstruction of binary tomography cross-sections obtained
from a small number of projections. The aim of this new
method is to escape from local minima by changing the shape
of the boundaries of the image. First, an initial binary image
is reconstructed with a deterministic Total Variation regular-
ization method, and then this binary reconstructed image is
refined by a stochastic partial differential equation with sin-
gular diffusivity and a gradient dependent noise. This method
is tested on a 256 × 256 experimental micro-CT trabecular
bone image with different additive Gaussian noises. The re-
construction images are clearly improved.

Index Terms— X-ray imaging, TV regularization, binary
tomography, bone microstructure

1. INTRODUCTION

The tomographic reconstruction problem with a limited num-
ber projection angles has many applications in medical imag-
ing and material science. Binary tomography methods can be
used to formulate it as a simpler inverse problem [1]. In this
framework, the inverse problem is associated with an under-
determined linear system of equations with the linear Radon
projection operator R and binary constraints:

Rf = pδ f = (f1, .......fn) ∈ {0, 1}n (1)

relating the pixel values (fi)1≤i≤n of the image and the mea-
sured projection values pδ which is some approximation of
the real projection data p, corresponding to the true solution
f∗ withRf∗ = p. Numerous approaches have been proposed
to solve this tomography reconstruction problem [2,3]. Statis-
tic methods are based on Bayesian estimation and Markov
random fields [4]. Some studies are based on the minimiza-
tion of a functional that incorporates a data term and a binary
constraint, with stochastic techniques [5] or convex analysis
optimization [6, 7]. The Total Variation regularization intro-
duced by Rudin et al. [8] can be very useful to obtain stable
solutions [9, 10]. But there are still obvious errors existing
in the boundaries of the binary reconstructed images [10]. It
may be interesting to escape this local minimum with a global

optimization search. Stochastic algorithms based on stochas-
tic partial differential equations have often been proposed for
the global optimization of non-convex functions [11–15].
The main idea of this method is to escape the traps of local
minima by changing the shape of boundaries of the binary
reconstruction images with some stochastic noise.

The main contribution of this work is to use a nonlinear
diffusion derived from the TV regularization method for the
discrete tomography problem. A gradient dependent noise is
used in this stochastic approach. We start from a deterministic
TV regularization scheme and obtain an initial reconstructed
image and then improve this reconstructed image with an in-
termittent diffusion in which the stochastic TV approach and
the TV regularization methods are used alternatively.

This paper is organized as follows. After the introduc-
tion, the inverse problem formulation of the binary tomogra-
phy problem is presented together with the TV regularization
method, and the Alternate Direction of Minimization Method
(ADMM) used to minimize the regularization functional. The
next section describes the nonlinear diffusion based on the TV
regularization and a gradient dependent noise term. The nu-
merical results obtained on a noisy bone CT cross-sections
are reported and discussed in the last section. We then give
the main conclusions and perspectives of our work.

2. TOTAL VARIATION REGULARIZATION AND
ADMM APPROACH

The binary tomography is highly ill-posed problem and a reg-
ularization is necessary to obtain stable solutions. In this
work, a Total Variation regularization with convex constraints
f ∈ [0, 1]n is considered with the following minimization
problem:

minimize
µ

2
‖pδ −Rf‖22 + JTV (f) s.t. f ∈ [0, 1]n (2)

where µ is the regularization parameter,and JTV (f) the
Total Variation semi-norm of f . This regularization is based
on computing the L1 norm of the gradient:

JTV (f) =

∫
Ω

|∇f(r)|dr (3)



When a discrete image f is considered, the JTV (f) can be
expressed as f : TTV (f) =

∑
i ‖ Dif ‖, where Di is the

gradient operator at pixel i. In this study, the isotropic TV
regularization is used. A fast, efficient TV/L2 minimization
algorithm based on an augmented Lagrangian function and
the Alternating Direction of Minimization Method (ADMM)
[16–20] is used to minimize the TV regularization functional.
In this work, the following augmented Lagrangian including
convex constraints, f ∈ C = [0, 1]n is considered:

L(f, (gi), h, (λi), λC) =
∑
i

(‖gi‖2 − λti(gi −Dif)

+
β

2
‖gi −Dif‖22 +

µ

2
‖g −Rf‖22

+IC(h) +
β

2
‖h− f‖22 − λtC(h− f)

(4)

where µ is the regularization parameter, β the Lagrangian
parameter, IC the characteristic function of the convex set.
The Lagrange multipliers (λi), λc are vectors in R2n2

and
Rn2

. For each pixel i, Dif ∈ R2 is the first-order finite dif-
ference at pixel i in both horizontal and vertical directions.
With the alternating minimization algorithm, the sequences
(fk, gki , h

k, λki , λ
k
C) are constructed with the following itera-

tive scheme: For each pixel i:

gk+1
i = max{‖Difk +

1

β
(λki )‖ −

1

β
, 0}

Dif
k + 1

β
(λki )

‖Difk + 1
β
(λki )‖

(5)

The hk update is:

hk+1 = πC(f
k +

λkC
β

) (6)

where πC is the projection of the convex set C. The new iter-
ate fk+1 is obained from the following linear system:

(
∑
i

Dt
iDi +

µ

β
RtR+ I)fk+1 =

∑
i

Dt
i(g

k+1
i − 1

β
λki }

+
µ

β
Rtg + hk+1 − λkC

β

(7)

where I is the identity operator. The Lagrange multipliers
(λi), λC are updated with:

λk+1
i = λki − β(gk+1

i −Dif
k+1) (8)

λk+1
C = λkC − β(hk+1 − fk+1) (9)

The sequence (fk, gki , h
k, λki , λ

k
C) which is generated by

the ADMM algorithm converges to a Kuhn-Tucker point of
problem (P), (f∗, g∗i , h

∗, λ∗i , λ
∗
C).

3. SINGULAR STOCHASTIC DIFFUSION
EQUATION WITH GRADIENT DEPENDENT NOISE

In order to find the global minimum of a function: g : Rm →
Rm, a random trajectory X(t) governed by a stochastic dif-
ferential equation may be used [11–15].

dX(t) = −∇g(X(t))dt+ η(t)dW (t) t ∈ [0,∞] (10)

where W = (W1(t), ....,Wm(t)) is the standard m di-
mensional Brownian motion and η(t) the stochastic noise
strength. The main idea is to combine the advantages of gra-
dient flow and of a stochastic perturbation to escape the traps
of local minimizers [11–15]. We have used the same type
of methodology for our binary tomography reconstruction
problem. To refine the solution obtained with the ADMM
algorithm, we are interested here with a singular stochastic
diffusion equation (E) [21, 22] of the type:

dX(t) = div (sgn(∇)(X(t))dt−R∗(RX(t)− pδ)
+σ(∇X(t))dW (t)

(11)
The random noise σ chosen is a gradient dependent noise
σ(∇Xε(t))dW (t) = ∂X

∂s dW1(x, t) +
∂X
∂t dW2(y, t) where

Wk(x, t) are independent Wiener random fields with con-
tinuous covariance function rk(x, y) bounded by a constant
r0. This type of equation has been extensively studied with
additive and multiplicative noise [23]. The equation with
a gradient-dependent noise is considered in this work be-
cause the noise is located on the boundaries of the images
reconstructed with the TV regularization. The existence of
solutions is not considered in this study.

The global optimization is performed with an intermittent
diffusion [24] method: the stochastic diffusion and the TV
regularization are performed successively on random time in-
tervals. The time interval lengths and the stochastic noise
strength ηi are chosen randomly in the range [0, Tmax] and
[0, ηmax]. where Tmax is the scale ofthe diffusion time and
ηmax is the scale of the stochastic noise strength.

4. RESULTS AND DISCUSSION

4.1. Simulation details

The TV and stochastic TV based methods were applied
to simulated projections of an experimental bone cross-
section obtained with synchrotron micro-CT (voxel size:
15 µm) [25]. Fig.1 is a 256 × 256 bone cross-section im-
age reconstructed from Filtered Back Projections (FBP) with
400 projections and 400 X-rays per projection and subse-
quently thresholded. This reference image is the solution f∗

of Rf∗ = p. In the following, the discrete approximation
of the projection operator R is the Radon transform imple-
mented on Matlab Image Toolbox. Our optimization method



is tested with M = 10 equally projections angles and noisy
projections pδ . The number of rays per projection angle is
NP = 367. Several additive gaussian noise noise levels were
studied with the standard deviations σ = 0 (PSNR=0dB),
σ = 20 (PSNR=6dB), σ = 30 (PSNR=3.5dB).

Fig. 1. Reconstruction of the bone cross-section from 400 pro-
jections with the FBP algorithm, as the “ground-truth” image.
The bone fraction is 14.20%

First, the TV regularization method is used to obtain a
first reconstruction image f0. The Lagrange parameter β con-
trols the speed of convergence, and the final reconstructed im-
age fm(µ) obtained in the optimization process only depends
on the regularization parameter µ. The iteration are stopped
when ‖ fm+1−fm ‖< 0.01. We tested many pairs of parame-
ters for the TV algorithm, and our the choice of the parameters
is based on Morozov discrepancy principle [26]. The best pa-
rameters (µ, β) which are chosen satisfy ‖ Rfm(µ)−pδ ‖≈ δ
at the final iterationm, where δ is the noise level which can be
estimated with δ =

√
M ×NPσ. An example of reconstruc-

tion image obtained after binarization and the correspond-
ing error map obtained are diplayed in Fig.2a and Fig.2b for
σ = 20. Some errors are still present on the boundary of the
image. This reconstruction errors are worse if the parameters
are not chosen according to the Morozov principle.

In a second step, a nonlinear intermittent diffusion is ap-
plied. The discretization of the SPDE and of the Brownian
motions was performed with classical finite difference meth-
ods [27].The stochastic noise was added at each iteration to
the iterate fk given by the ADMM method. The r-Wiener
processes with a correlation function r were obtained with the
Fourier transform of the covariance function r̃(k) = η(|k|2 +
1)−2 where η controls the noise strength. The stochastic noise
strength η and the stochastic iteration number T are chosen
randomly with uniform distribution in [0.01, 0.1] and [1, 100].
The TV deterministic iterations are stopped when the data
term stagnates. Before the next stochastic step, the recon-
struction image is binarized. At each iteration, ‖Rfkbinary −
pδ‖ is calculated, where fbinary is the binarization of the
grey-level image. For comparison, some simulations have
been performed, starting from the same image f0, in which
the stochastic diffusion is replaced by a TV regularization
minimization.

(a) (b)

Fig. 2. (a) Reconstruction image f0 obtained with the TV reg-
ularization for σ = 20 and corresponding error map (b).

4.2. Numerical results

The image obtained with the stochastic diffusion with the
lowest value of ‖Rfkbinary − pδ‖ and the corresponding er-
ror map are displayed in Fig.3a and Fig.3b for σ = 20. The
reconstruction errors on the boundaries of the homogeneous
regions are reduced. Similar results are obtained for the other
noise levels.

(a) (b)

Fig. 3. (a) Reconstruction images obtained with the the non-
linear diffusion equation for σ = 20 and corresponding error
map (b).

In order to have more quantitative results, the evolution
the discrepancy term ‖Rf−pδ‖, of ‖Rfkbinary−pδ‖ and of the
missclassification rate are displayed on Figure 4.a,4.b Figure
5.a,5.b , Figure 6.a,6.b, starting from f0, for the stochastic
intermittent diffusion method and for the standard deviations
σ = 0, σ = 20, and σ = 30 respectively. On the same
plot, the error curves for the iterated TV regularization are
also displayed.

With the iterations, some decrease of the data term related
to the binary image towards the noise level δ is obtained ex-
cept for the iterated TV method with no noise. A decrease
of the misclassification rate as a function of the number of
iterations is also observed. The stochastic approach is more
efficient that a TV regularization used repeatedly. The data
term ‖Rfkbinary − pδ‖ remains higher than the noise levels



δ = 1220 and δ = 1831 for σ = 20 and σ = 30 but longer
runs will be performed to improve further the results.

(a) (b)

Fig. 4. (a) Evoluation with the iterations of ‖Rfbinary − pδ‖
TV (i) and for stochastic diffusion (ii). (a) Evoluation with
the iterations of the missclassification rate for TV (i) and for
stochastic diffusion (ii). The standard deviation of the noise
is σ = 0

(a) (b)

Fig. 5. (a) Evoluation with the iterations of ‖Rfbinary − pδ‖
TV (i) and for stochastic diffusion (ii). (a) Evoluation with
the iterations of the missclassification rate for TV (i) and for
stochastic diffusion (ii). The standard deviation of the noise
is σ = 20

5. CONCLUSION

This work proposes a new stochastic diffusion method with
gradient dependent noise to reconstruct binary tomography
cross-section from few projection angles. An initial binary
reconstructed image is obtained with a deterministic TV reg-
ularization method. It is then refined by a stochastic partial
differential equation. Usually, the reconstruction errors ob-
tained with TV are localized on the boundary. The stochas-
tic search algorithm based on TV with a gradient dependent
noise is useful to escape from the local minima by chang-
ing the shape of boundary regions according to the stochastic
noise. The new method leads to an obvious decrease of re-
construction errors and misclassification rate for 10 projection
with different noise levels. The efficiency of this method will

(a) (b)

Fig. 6. (a) Evoluation with the iterations of ‖Rfbinary − pδ‖
TV (i) and for stochastic diffusion (ii). (a) Evoluation with
the iterations of the missclassification rate for TV (i) and for
stochastic diffusion (ii). The standard deviation of the noise
is σ = 30

be investigated in the future work on more projection num-
bers and noise levels, for longer simulations, larger images
and clinical data sets with various structural parameters.
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