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ABSTRACT

Because of their lower complexity and better error perfor-

mance over K-best detectors, lattice-reduction (LR)-aided K-

best detectors have recently proposed for large-scale multi-

input multi-output (MIMO) detection. Among existing LR-

aided K-best detectors, complex LR-aided K-best detector is

more attractive compared to its real counterpart due to its po-

tential lower latency and resources. However, one main dif-

ficulty in hardware implementation of complex LR-aided K-

best is to efficiently find top K children of each layer in com-

plex domain. In this paper, we propose and implement an

LR-aided K-best algorithm that efficiently finds top K chil-

dren in each layer when K is relatively small. Our implemen-

tation results on Xilinx VC707 FPGA board show that, with

the aid of LR, the proposed LR-aided K-best implementation

can support 3 Gbps transmissions for 16x16 MIMO systems

with 1024-QAM with about 2.7 dB loss to the maximum like-

lihood detector at bit-error rate 10−4.

Index Terms— Lattice reduction, large-scale MIMO,

K-best algorithm, field-programmable gate array, very-large-

scale integration

1. INTRODUCTION

By transmitting and receiving signals via tens or hundreds

of antennas, large-scale multi-input multi-output (MIMO)

systems have shown great potential for next generation of

wireless communications to obtain high spectral efficiencies.

However, because of the non-deterministic polynomial hard

of the optimal MIMO detection, a critical challenge of large-

scale MIMO systems is to design high performance, high

throughput, and low latency detectors. Several detectors such

as local neighborhood search and iterative soft interference

cancellation detector have been studied for large-scale MIMO

systems [1]. However, they still require considerable com-

plexity especially for higher order modulations. In contrast,

linear detectors (LDs) and successive interference cancella-

tion (SIC) detectors require polynomial complexity but suffer

from significantly degraded error performance.

To improve the error performance of LDs and SIC de-

tectors, lattice reduction (LR)-aided LDs and SIC detectors

are proposed [2–4], but their performance gaps to the opti-

mal MIMO detection are still significant when the number of

antennas is large [5, 6]. To further bridge the gap, LR-aided

K-best detectors are proposed in [7–10]. Among the exist-

ing LR-aided K-best detectors, the complex LR-aided K-best

detector may be more favorable than its real counterpart for

hardware implementation in terms of latency and resource us-

age. However, one main difficulty of the complex LR-aided

K-best detector is to find the best K children of each layer in

complex domain. Although several existing methods [10, 11]

are proposed to find the top K children in complex domain,

the methods are still complicated and inflexible for hardware

implementation.

In this paper, we propose a novel complex LR-aided K-

best detector for large-scale MIMO systems. We develop

a hardware-efficient method to find top K children of each

layer in complex domain when K is relatively small. In addi-

tion, to verify the efficiency of our design, we implement the

complex LR-aided K-best detector on Xilinx FPGA for large-

scale MIMO detection. Our implementation results show that

the FPGA realization can support up to 3 Gbps MIMO trans-

missions for 16x16 MIMO systems with 1024-QAM with

about 2.7 dB gap to the MLD at bit-error rate (BER) 10−4.

The rest of the paper is organized as follows. Sec. 2 intro-

duces system model and LR-aided detection. Sec. 3 describes

complex LR-aided K-best detector and presents our proposed

LR-aided K-best search. Sec. 4 discusses the hardware imple-

mentation of our proposed LR-aided K-best search algorithm

for 16x16 MIMO systems. Sec. 5 concludes the paper.

Notation: Superscript T denotes the transpose, H denotes

the Hermite. The real and imaginary parts of a complex

number are denoted as R[·] and I[·]. Upper- and lower-case

boldface letters indicate matrices and column vectors, re-

spectively. Ai,k indicates the (i, k)th entry of matrix A. IN
denotes the N×N identity matrix, 0N×L is the N×L matrix

with all entries zero, and 1N×L is the N × L matrix with all

entries one. Z is the integer set, Z[j] is the Gaussian integer

set having the form Z+ Zj, and j =
√
−1. E{·} denotes the

statistical expectation. ‖ · ‖ denotes the 2-norm.



2. SYSTEM MODEL AND LR-AIDED DETECTOR

Consider a transmission model of an MIMO system with Nt

transmit antennas and Nr receive antennas as

y = Hs+w, (1)

where s = [s1, s2, · · · , sNt
]T , si ∈ S is the complex infor-

mation symbol vector with S being a constellation of QAM

set, H is an Nr × Nt, (Nr ≥ Nt) complex channel matrix,

whose entries are modeled as independent and identically dis-

tributed (i.i.d.) complex Gaussian variables with zero mean

and unit variance, y = [y1, y2, · · · , yNr
]T is the received sig-

nal vector, and w = [w1, w2, · · · , wNr
]T is the complex ad-

ditive white Gaussian noise (AWGN) vector with zero mean

and covariance matrix N0INr
.

Given the model in Eq. (1), we consider the following

revised problem for LR-aided detectors

ŝ = arg min
s̃∈UNt

‖y −Hs̃‖2 + N0

σ2
s

‖s̃‖2 (2)

= arg min
s̃∈UNt

‖ȳ − H̄s̃‖2 (3)

where the finite alphabet set of si, S is relaxed to an uncon-

strained constellation set U in the form of 2Z+1+(2Z+1)j
[12], the second term of the right hand side of (2) is the

minimum-mean-square-error (MMSE) regularization term

that compensates the loss of boundary information and en-

ables diversity-multiplexing tradeoff (DMT) optimality [13]

withE{ssT} = σ2
sINt

, and H̄ and ȳ are the MMSE-extended

matrices given as

H̄ =

[

H
√

N0

σ2
s

INt

]

, ȳ =

[

y

0Nt×1

]

, (4)

with E{ssH} = σsINt
.

To solve the unconstrained problem in (3) with lower

complexity, the LR-aided detection performs LR on the ma-

trix H̄ to obtain a more “orthogonal” matrix H̃ = H̄T, where

T is a unimodular matrix, such that all entries of T are Gaus-

sian integers and the determinant of T is ±1 or ±j. Given H̃

and T, the problem in (3) becomes

ŝ = 2T arg min
z̃∈Z[j]Nt

‖ỹ− H̃z̃‖2 + (1 + j)1Nt×1, (5)

where ỹ is the received signal vector after shifting and scaling

as (ȳ−H̄(1+j)1Nt×1)/2 and s̃ = 2Tz̃+(1+j)1Nt×1. Since

H̃ is more “orthogonal,” one could expect low-complexity de-

tectors (e.g., SIC and linear detectors) can achieve better error

performance compared to those without LR.

3. LR-AIDED K-BEST DETECTORS

3.1. Complex LR-aided K-best Detector

To further enhance the performance of the LR-aided SIC de-

tector, the complex LR-aided K-best detector [7, 8] is pro-

posed to find a “better” sub-optimal solution to (5).

A general description of the complex LR-aided K-best al-

gorithm is given in Table 1. First, the LR-aided K-best detec-

tor performs QR decomposition on H̃ = QR, where Q is an

(Nr+Nt)×Nt orthonormal matrix andR is an Nt×Nt upper

triangular matrix. Then, the problem in (5) is reformulated as

ŝ = 2T arg min
z̃∈Z[j]Nt

‖y̆ −Rz̃‖2 + (1 + j)1Nt×1. (6)

where y̆ = QHỹ.

Next, given (6), the LR-aided K-best detector performs

breadth-first search from the Ntth layer to the 1st layer. For

each layer (e.g., the nth layer), only top K partial candi-

dates {z(n)k }Kk=1 among all the children of the K parents

{z(n+1)
k }Kk=1 are survived, where a partial candidate of the

nth layer, z
(n)
i , is defined as z

(n)
i = [z

(n)
i,n , · · · , z

(n)
i,Nt

]T , the

cost is calculated as

cost
(n)
i =

Nt
∑

ℓ=n

|y̆ℓ −
Nt
∑

k=ℓ

Rℓ,kz
(n)
i,k |2, (7)

and a partial candidate z
(n)
i is a child of z

(n+1)
k if and only if

z
(n)
k = [z

(n)
k,n, (z

(n+1)
i )T ]T , z

(n)
k,n ∈ Z[j].

When the search of the 1st layer is completed, the LR-

aided K-best detector outputs {z(1)k }Kk=1 as the K estimates

of the symbols in LR domain {ẑk}Kk=1. By transforming the

symbols to s-domain, we obtain K estimated symbols that

could be served as hard output or soft output for uncoded and

coded systems, respectively.

From Table 1, the key task of the complex LR-aided K-

best algorithm is to efficiently find the K best partial candi-

dates of each nth layer among all the children of the partial

candidates of the previous (n+ 1)st layer.

3.2. Existing Approaches to Find Top K Children

To find the top K children of the (n + 1)th layer, there are

mainly two existing methods:

Input: R, y̌, candidate size K
Output: {ẑk}Kk=1

(1) z
(Nt+1)
1 = [], cost

(Nt+1)
1 = 0, len = 1

(2) For n = Nt : −1 : 1

(3)
[

{z(n)k }Kk=1, {cost
(n)
k }Kk=1

]

=

Find Kbest Children(

{z(n+1)
k }lenk=1, {cost

(n+1)
k }lenk=1)

(4) len = K
(5) End for

Table 1. A general description of the complex LR-aided K-

best algorithm.



• Pre-expansion [7]: The pre-expansion method first finds

top K children of each parent, and then chooses the top

K partial candidates for the nth layer among all the K2

children of all K parents.

• On-demand expansion [8–11,14]: The on-demand expan-

sion maintains a candidate list with size K that stores the

best child of each parent. Then, the on-demand expansion

method chooses the best child in the candidate list as one

of the best K children of the layer and replaces the best

child in the candidate list with its next best sibling of the

same parent. After K selections, the best K children of

the layer are obtained.

However, these methods exhibit some issues for hardware

implementation of complex LR-aided K-best detector.

• The pre-expansion method requires a sorter over K2 can-

didates, which may pose considerable hardware cost and

latency [7, 15].

• Although the on-demand method reduces the sorter from

size K2 to K , the on-demand expansion requires 2 mul-

tipliers in finding next best sibling and evaluating its cost

[10, 11], which may result in a critical path.

• Unlike the real K-best algorithm, where the top K chil-

dren can be easily found in a zig-zag fashion or Schnorr-

Euchner (SE) method, generating the top K children of

each parent for the complex case is more complicated, and

thus existing method [10,11] may not work well for large-

scale MIMO systems.

3.3. Proposed Hybrid Expansion Method

To circumvent the implementation issues of the existing meth-

ods, in this paper, we propose a hybrid pre-expansion/on-

demand expansion method, which consists of two stages:

1. The pre-expansion stage finds the top K children (or-

dered) of each parent in complex domain. As we will

show in Sec. 4.2, when K is small, by checking some

conditions, the top K children (ordered) in complex do-

main can be uniquely determined.

2. The on-demand expansion stage finds the top K of the

layer. When a child in the candidate list is chosen as one

of the best K children of the layer, its next best sibling is

selected from the top K children list of its parent that is

obtained in the pre-expansion stage.

Therefore, the hybrid expansion method only requires a

sorter of size K and does not need any multipliers in the on-

demand expansion stage. The cost of the hybrid method is

the storage of K2 children, which is same as that of the pre-

expansion method.
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Fig. 1. Performance comparisons of the CLLL-aided K-best

detector with MMSE regularization for a 16x16 MIMO sys-

tem with 1024-QAM and different K’s.

4. IMPLEMENTATION OF COMPLEX LR-AIDED

K-BEST DETECTOR

In this section, we present the hardware implementation of the

proposed complex LR-aided K-best detector for large-scale

MIMO systems. We first determine the value of K of the LR-

aided K-best. Then, we will present the proposed method to

find top K children of a parent in complex domain. Finally,

we will describe our VLSI implementation of the proposed

complex LR-aided K-best on FPGA for 16x16 MIMO sys-

tems.

4.1. Determination of K Value of LR-aided K-best

One key parameter of the LR-aided K-best is the value of K .

To decide the value ofK with a good performance/complexity

tradeoff, we conduct the performance of the complex LR-

aided K-best detector with MMSE regularization for a 16x16

MIMO system with 1024-QAM and K = 1, · · · , 10 in Fig.

1. The LR algorithm adopts the CLLL algorithm in [2]. We

observe that as K increases, the performance gain deceler-

ates, and the gain of K = 10 over K = 6 is about 0.5 dB at

BER= 10−4, while the gain of K = 6 over K = 2 is about 2
dB. Therefore, we choose K = 6 for the implementation.

4.2. Finding Top 6 Children of Each Parent

To simplify the notations, in this subsection, we consider the

following model

c = |y − rz|2

= (R[y]− rR[z])2 + (I[y]− rI[z])2, (8)

where y is a complex number, r 6= 0 is a real number, z is a

Gaussian integer that is be determined, and c is the cost. Let



us define a sequence of all possible z, i.e., {z(1), z(2), . . .}
(z(n) 6= z(m), ∀n 6= m) such that their costs {c(n) = |y −
rz(n)|2}∞n=1 are in ascend order, i.e., c(1) < c(2) < . . . for all

possible z. We denote z(n) as the nth child.

It is clear that the first child can obtained as

z(1) = ⌈y/r⌋, (9)

c(1) = |y − rz(1)|2. (10)

To simplify the equations in deriving the following 2nd to

6th children, let us denote ∆1 = |R[y] − rR[z(1)]|, ∆2 =
|I[y] − rI[z(1)]|, δ1 = sgn(R[y]/r − R[z(1)]), and δ2 =
sgn(I[y]/r − I[z(1)]).

Proposition 1. The 2nd and the 3rd children and their costs

can be determined as

z(2) =

{

z(1) + δ1, if ∆1 > ∆2

z(1) + δ2j, o.w.
(11)

c(2) =

{

(|r| −∆1)
2 +∆2

2, if ∆1 > ∆2

∆2
1 + (|r| −∆2)

2, o.w.
(12)

z(3) =

{

z(1) + δ2j, if ∆1 > ∆2

z(1) + δ1, o.w.
(13)

c(3) =

{

∆2
1 + (|r| −∆2)

2, if ∆1 > ∆2

(|r| −∆1)
2 +∆2

2, o.w.
(14)

In the following, without loss of generality, we assume

∆1 > ∆2.

Proposition 2. The 4th child and its cost are given by

z(4) =

{

z(1) + δ1 + δ2j, if 2∆1 + 4∆2 > |r|
z(1) − δ2j, o.w.

(15)

c(4) =

{

(|r| −∆1)
2 + (|r| −∆2)

2, if 2∆1 + 4∆2 > |r|
∆2

1 + (|r| +∆2)
2, o.w.

(16)

Proposition 3. If 2∆1+4∆2 > |r|, the 5th child and its cost

are

z(5) = z(1) − δ2j, (17)

c(5) = ∆2
1 + (|r| +∆2)

2, (18)

else the 5th child and its cost are

z(5) =

{

z(1) + δ1 + δ2j, if 4∆1 + 2∆2 > |r|
z(1) − δ1, o.w.

(19)

c(5) =

{

(|r| −∆1)
2 + (|r| −∆2)

2, if 4∆1 + 2∆2 > |r|
(|r| +∆1)

2 +∆2
2, o.w.

(20)

Proposition 4. If 4∆1+2∆2 < |r|, the 6th child and its cost

are

z(6) = z(1) + δ1 + δ2j, (21)

c(6) = (|r| −∆1)
2 + (|r| −∆2)

2, (22)

else the 6th child and its cost are

z(6) =

{

z(1) + δ1 − δ2j, if 4∆1 − 2∆2 > |r|
z(1) − δ1, o.w.

(23)

c(6) =

{

(|r| −∆1)
2 + (|r|+∆2)

2, if 4∆1 − 2∆2 > |r|
(|r|+∆1)

2 +∆2
2, o.w.

(24)

Summarizing Propositions 1-4, we conclude that the first

6 children can be uniquely determined by the following con-

ditions: ∆1 ≶ ∆2, 2∆1 + 4∆2 ≶ |r|, 4∆1 + 2∆2 ≶ |r|,
4∆1− 2∆2 ≶ |r|, and 2∆1− 4∆2 ≶ |r|. Note that, since the

multiplications with 2 and 4 can be implemented as shifting

operations, all these conditions can be efficiently checked in

hardware implementation.

4.3. Overview of the Proposed Implementation

Besides y̌ and R, the implementation requires the input of

{1/Ri,i}Nt

i=1 that is assumed to be pre-computed before the

LR-aided K-best. The brief description of the main modules

of the implementation is provided as follows.

• Last layer (LL) module generates the best 6 children of

the Ntth layer using the method described in Sec. 4.2.

• Pre-expansion (PE) module generates the best 6 children

of one parent of a specific layer using the method de-

scribed in Sec. 4.2.

• On-demand expansion and selection (OES) module chooses

the best 6 children of a specific layer given the lists of the

best 6 children of all 6 parents using a sorter of size 6.

4.4. Synthesis and Performance Results

The proposed complex LR-aided K-best detector is modeled

using Verilog, and the fixed-point (FP) settings for some key

parameters are listed in Table 2 (the FP setting is denoted as

[a, b], where a is the number of integer bits including one sign

bit if applicable, and b is the number of fractional bits).

Variable y̌ R 1/Ri,i z cost

FP setting [11, 10] [4, 10] [4, 10] [10, 0] [5, 10]

Table 2. Fixed-point settings of the FPGA implementation.

The Verilog design is synthesized, and placed and routed

on Xilinx VC707 evaluation board. The used resources, max-

imum achievable frequency, latency, and throughput of the

proposed LR-aided K-best implementation are summarized in

Table 3. For 1024-QAM, the maximum throughput for 16x16

MIMO systems is over 3 Gbps.

The BER performance of the proposed implementation is

displayed in Fig. 2 using CLLL. We observe that the proposed

implementation can achieve almost the same performance as

the floating-point one, and the performance gap to the MLD

for 1024-QAM is 2.7 dB at BER = 10−4.



Design 16x16 MIMO

Slices 22043

Multipliers (DSP48E1s) 702

Maximum frequency, fmax 120.351 MHz

Latency 188 cycles

Max. throughput (64-QAM) 1925 Mbps

Max. throughput (256-QAM) 2567 Mbps

Max. throughput (1024-QAM) 3209 Mbps

Table 3. Implementation results of the proposed LR-aided K-

best detector for 16x16 MIMO systems.
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Fig. 2. Performance of the FPGA implementation of the pro-

posed LR-aided K-best detector for 16x16 MIMO systems

with different QAMs.

5. CONCLUDING REMARKS

In this paper, we proposed a novel complex LR-aided K-best

algorithm that efficiently finds top K children of each layer

in complex domain and is suitable for hardware implementa-

tion. In addition, we develop a hardware implementation of

the proposed complex LR-aided K-best for 16x16 MIMO on

Xilinx FPGA. The implementation results show that the pro-

posed LR-aided K-best based on FPGA can achieve 3 Gbps

throughput with about 2.7 dB gap at BER= 10−4.
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