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ABSTRACT

In this paper, a novel time recursive implementation of the

Sparse Learning via Iterative Minimization (SLIM) algorithm

is proposed, in the context of adaptive system identification.

The proposed scheme exhibits fast convergence and tracking

ability at an affordable computational cost. Numerical simu-

lations illustrate the achieved performance gain in comparison

to other existing adaptive sparse system identification tech-

niques.

Index Terms— Adaptive system identification, Sparse

systems, SLIM algorithm

1. INTRODUCTION

With the advent of compressing sensing adaptive spar-

sity aware algorithms for system identification have been

emerged, offering significant advantage over the classic

schemes [1, 2]. Under certain mild assumptions about the

system model and the driven signals, these methods provide

more accurate estimates of the sought parameters and exhibit

better performance with respect to the speed of convergence,

the tracking ability and often the complexity burden (see

among others [3–9] and the references therein).

A non parametric sparse estimation method, the Sparse

Learning via Iterative Minimization (SLIM) algorithm, has

recently been proposed in the context of radar imaging [10].

The SLIM algorithm was subsequently utilized in various

applications, such as spectral analysis and Synthetic Aper-

ture Radar (SAR) imaging, channel estimation of underwater

communications channels, multistatic active sonar signal

processing and wideband source location [11–16]. It was

demonstrated that, compared to other competitive schemes,

the SLIM algorithm offers a superior performance at an af-

fordable computational cost.

The SLIM algorithm has been designed for batch pro-

cessing. Direct application of the original scheme [10] for

adaptive processing results to an exceptional increase in the

computational load. Moreover, processing successive blocks

of data independently, may result to inferior performance, as

prior information related to the sought parameters is not in-

corporated into the current estimates.

In this paper, a novel time recursive implementation of the

SLIM algorithm is proposed in the context of adaptive system

identification. Reminiscing our earlier work on the Iterative

Adaptive Approach (IAA) algorithm [17], a time recursive

scheme is built up for the SLIM algorithm, able of updating

the sought parameters on a sample by sample basis. A fast im-

plementation is derived, offering a significant reduction in the

required computational load. The proposed adaptive scheme

offers improved convergence speed and tracking ability com-

pared to other existing schemes [4, 7], at an affordable com-

putational cost. The superior performance of the proposed

approach is illustrated by means of computer simulation.

2. THE SLIM ALGORITHM

Let x(k) ∈ �, k = 0, 1, 2, . . . be the input signal of a Finite

Impulse Response (FIR) system and y(k) be the measured

output signal described by

y(k) = xT
M (k)cM + η(k), (1)

where cM = [c1 c2 . . . cM ]T is a vector that carries the sys-

tem parameters, xM (k) = [x(k) x(k−1) . . . x(k−M+1)]T

is the regressor, whereas η(k) ∈ � denotes the disturbance

signal, with (·)T denoting the transpose. The parameter M
is related to the memory of the system and determines the

maximum number of taps to be considered in a specific ap-

plication. If the number of the non-zero elements in cM is

much smaller than M , then the system is said to be sparse.

Given a set of measurements at time instant n, we construct

the input-output data relationship as

yL(n) = XL(n)cM (n) + ηηηL(n) (2)

where

yL(n) =

⎡
⎢⎢⎢⎣
y(n− L+ 1)

...

y(n− 1)
y(n)

⎤
⎥⎥⎥⎦ , XL(n) =

⎡
⎢⎢⎢⎣
xT
M (n− L+ 1)

...

xT
M (n− 1)
xT
M (n)

⎤
⎥⎥⎥⎦

(3)

and ηηηL(n) = [ η(n− L+ 1) . . . η(n− 1) η(n) ]
T

, with

L > 0 denoting the number of available measurements at

time instant n. The SLIM algorithm introduced in [10] is

formed by minimizing, with respect to cM (n) and σ2(n), the

regularized cost function

L log(σ2(n)) +
1

σ2(n)
||yL(n)−XL(n)cM (n)||22+



2

p

M∑
κ=1

(|cκ(n)|p − 1) (4)

where 0 < p ≤ 1 is a parameter that controls the level of spar-

sity. σ2(n) denotes an estimate of the variance of the noise

signal η(k). The last term in (4) is a penalty term, which

in the case when p = 1 it reduces to 2||cM (n)||1 − 2M ,

while as p → 0 it becomes 2
∑M

κ=1 log (|cκ(n)|). SLIM

is a non parametric sparse system identification method ca-

pable of producing estimates of cM (n) and σ2(n) using a

coupled iterative procedure. It can be interpreted as a maxi-

mum a posteriori (MAP) method and existing sparse estima-

tion schemes [18,19] can be viewed as special cases (see [10]

for further details). The SLIM-0 is formed by iterating (5)-

(9), for i = 0, 1, . . .

w(i)
κ (n) = |c(i−1)

κ (n)|2−p, κ = 1, 2, . . . ,M (5)

W
(i)
M (n) = diag

{
w

(i)
1 (n), w

(i)
2 (n), . . . , w

(i)
M (n)

}
(6)

R
(i)
L (n) = XL(n)W

(i)
M (n)XT

L(n) + σ2(i−1)(n)IL (7)

c
(i)
M (n) = W

(i)
M (n)XL(n)

T
[
R

(i)
L (n)

]−1

yL(n) (8)

σ2(i)(n) =
1

L
||yL(n)−XL(n)c

(i)
M (n)||22 (9)

until practical convergence, with diag{.} denoting a diagonal

matrix. c
(0)
M (n) is initialized using the ordinary Least Squares

(LS) or the Ridge Regression LS (RR-LS) [20] and σ2(0)(n)
is set equal to a small positive value. The brute force im-

plementation of the SLIM algorithm requires approximately

ML2 +L3/3 operations per iteration, and usually 10-15 iter-

ations are sufficient for convergence.

We hereafter focus on the particular case when p = 0, re-

sulting to an estimation scheme known as the SLIM-0, algo-

rithm [12,14–16], noting that the presented work is also valid

for a different choice of p. Experimental evidence supports

the claim that SLIM-0 produces sparser estimates compared

to other possible SLIM alternatives resulting from a different

choice of p (see also [14–16] for the derivation of the SLIM-0

algorithm using a hierarchical Bayesian reasoning).

3. THE TIME RECURSIVE SLIM-0 ALGORITHM

When adaptive processing is considered, the SLIM-0 may be

applied directly on each block of data in (3), processing con-

secutive and overlapped data blocks one at a time, as being

in batch mode, noting however that this form of updating

will result in an unnecessarily heavy work load. Reminisc-

ing our earlier work on the time recursive implementation of

the IAA algorithm in the context of spectral estimation [17],

we propose a time recursive updating of the SLIM-0 algo-

rithm, where estimates at time instant (n − 1) are used for

the initialization of the corresponding recursions at time in-

stant n. Moreover, as time evolves and upon convergence,

Table 1. The Time Recursive SLIM-0 Algorithm

RL(n) = XL(n)WM (n− 1)XT
L(n) + σ2

0IL (1)

cM (n) = WM (n− 1)XT
L(n) [RL(n)]

−1
yL(n) (2)

wκ(n) = |cκ(n)|2 + w0(n), κ = 1, . . . ,M (3)
WM (n) = diag {w1(n), . . . , wM (n)} (4)

c
(i)
M (n) ≈ c

(i)
M (n − 1). This fact allows for the use of a sin-

gle SLIM-0 iteration each time a new set of measurements

is available, i.e., i = 1 and W
(0)
M (n) ≈ W

(1)
M (n − 1). We

further assume that the noise variance is constant and it is

given, i.e. σ2(n) = σ2
0 . This is a commonly adopted assump-

tion in existing adaptive methods for sparse system identifica-

tion [4, 7]. The assumption that σ2(n) is constant and known

beforehand, can be relaxed and it is here adopted solely for

reasons of comparison with existing schemes [4, 7].

The resulting algorithm, referred to hereafter as the Time

Recursive SLIM-0 (TR-SLIM-0) algorithm is tabulated in Ta-

ble 1. A small positive constant, denoted by w0(n), has been

inserted in the equation that determines the updating of the

weights. Otherwise, the system coefficients whose magni-

tude is close to zero at a specific time instant could not be

able to adapt in the case of variation in either the location

or in the magnitude of the sought system parameters. Thus,

wκ(n) = |cκ(n)|2+w0(n), κ = 1, 2, . . . ,M with w0(n) > 0
is used instead of (5). A reasonable choice for w0(n) is the

use of the (smoothed) normalized, mean squared deviation

between the values of two successive estimates of cM (n),
given by

w0(n) =
||δδδM (n)||22
||γγγM (n)||22

(10)

where

δδδM (n) = νδδδM (n− 1) + (1− ν)|cM (n)− cM (n− 1)|2
γγγM (n) = νγγγM (n− 1) + (1− ν)|cM (n)|2 (11)

and where ν ∈ (0, 1] is a smoothing factor. Upon conver-

gence, w0(n) is expected to be small enough, but not equal

zero. When the system undergoes variations either in the lo-

cation or in the magnitude of the non-zero coefficients, w0(n)
will move towards larger values. In this way, the elements of

cM (n) that have been settled into some location close to zero,

will be able to re-adapt again following the system variation.

3.1. Fast Implementation

The computational complexity of the proposed TR-SLIM-0

algorithm is O (
ML2 + L3

)
which is still higher than that of

other existing O (
M2

)
or O (LM) schemes [4, 7]. Although

XL(n) is a Toeplitz matrix, RL(n) does not enjoy any partic-

ular structure. Introducing some further approximations in the



TR-SLIM-0 algorithm, a fast updating scheme is derived. The

computational complexity of the proposed fast implementa-

tion is reduced to O (
L2

)
.

The data matrix (3) can be partitioned as

XL(n) =

[
XL−1(n− 1)

xT
M (n)

]
=

[
x̃L(n)

XL−1(n)

]
, (12)

where x̃L(n) � xM (n− L+ 1). Using (12), RL(n) defined

by (1) of Table 1, is partitioned as

RL(n) =

[
Rf

L−1 rfL−1

rTL−1 rfo

]
(13)

where, rfo = xT
M (n)WM (n− 1)xT

M (n) + σ2
0 , and

Rf
L−1 = XL−1(n− 1)WM (n− 1)XT

L−1(n− 1) +

σ2
0IL−1 (14)

rfL−1 = XL−1(n− 1)WM (n− 1)xT
M (n). (15)

RL(n − 1), which is the covariance matrix at the previous

time instant (n− 1), is partitioned using (12) as

RL(n− 1) =

[× ×
× Rb

L−1

]
(16)

where

Rb
L−1 = XL−1(n− 1)WM (n− 2)XT

L−1(n− 1) +

σ2
0IL−1, (17)

with × denoting terms of no interest. Clearly, (14) and (17)

imply that Rf
L−1 �= Rb

L−1, as WM (n − 1) �= WM (n − 2),
and thus further simplifications in the matrix manipulation

is prohibited. We notice however that Rb
L−1 and Rf

L−1 can

be related by a relatively simple expression, provided that at

each time instant n, a small fraction of the diagonal elements

in WM (n − 1) is only reloaded, while the rest are kept un-

changed. The weight reloading strategy can be organized in a

cyclic way [21, 22], where a fixed number of weights, say m,

are only reloaded at each time instant, and where WM (n−1)
is replaced by the cyclically updated counterpart WC

M (n−1).
Using the cyclically reloaded weight matrix WC

L (n − 1), a

low rank relationship between Rf
L−1 and Rb

L−1 is established

as

Rf
L−1 = Rb

L−1 +
m∑
i=1

Δw(i)xki

L−1(n− 1)xkiT
L−1(n− 1) (18)

where

Δw(i) � wki(n− 1)− wki(n− 2),

with xki

L−1(n−1) denoting the ki-th column of XL−1(n−1),
i = 1, 2 . . .m.

Suppose that at time instant (n− 1) the inverse [RL(n−
1)]−1 has been computed. Using (16) and the matrix inversion

lemma for partitioned matrices ( (4.160) in [1]), the inverse

[Rb
L−1]

−1 is computed as (see also [22, 23])

[
0 0T

L−1

0L−1 [Rb
L−1]

−1

]
= [RL(n− 1)]−1 −BLB

T
L (19)

where BL = [RL(n − 1)]−1e1L/
√
e1TL [RL(n− 1)]−1e1L,

with e1L denoting the first column of the identity matrix IL.

[Rf
L]

−1 is subsequently updated using (18) and the matrix

inversion lemma for modified matrices ((4.148) in [1]). Fi-

nally, [RL(n)]
−1 is obtained using (13)-(15) and the matrix

inversion lemma for partitioned matrices ((4.159) in [1]).

The resulting algorithm is termed hereafter as the Cyclically

weight reloaded TR-SLIM-0 (CTR-SLIM-0). The computa-

tional complexity of the proposed scheme is given by

(4 + 2m)(L2 + L) + 5M + 5φ(M + L)

where m is the number of the cyclic steps applied at each

time instant, with φ(x) denoting the computational cost of

performing a Fast Fourier Transform (FFT) of size equal to

x. The L2 term results from the computations involved in

the application of the matrix inversion lemmas in (13) and in

(18), the evaluation of (19), as well as from the various matrix

vector products. The term φ(M+L) results from the efficient

implementation of the Toeplitz vector products involved in (2)

of Table 1 and in (15), using the FFT.

4. SIMULATIONS

To illustrate the performance of the proposed algorithm, the

identification of a time-varying sparse system with memory

M = 200 and S = 20 non-zero coefficients is considered.

Each non-zero component in (1) varies according to the first

order auto-regressive model [24], as

ci(n) = αci(n− 1) +
√
1− |α|2vi(n)

where α = Jo(2πfDTs) with Jo(.) denoting the zeroth-order

Bessel function and vi(n) being a unit variance white noise

signal. The normalized Doppler frequency is set equal to

fDTs = 0.005, resulting in rapid time variation. The loca-

tion of the active (non-zero) system coefficients is selected

randomly, with an abrupt change occurring in the middle of

the experiment, where the non-zero coefficients are relocated

in new, randomly selected positions. The input signal x(n)
is a unit variance white noise signal. The additive distur-

bance is a white noise signal with variance σ2
0 = 0.1. The

mean squared deviation of the estimated system coefficients,

defined as MSD(n) =
E[||cM (n)−co

M (n)||22]
E[||co

M (n)||22]
is used as a per-

formance index, with coM (n) denoting the true system coeffi-

cients, and where E[.] denotes the expectation operator, which
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Fig. 1. (a) CTR-SLIM-0: MSD for different values of L when m = 10 (b) CTR-SLIM-0: MSD for different values of m
when L = 50. (c) CTR-SLIM-0 against APWL1. (d) CTR-SLIM-0 against CCDRWL, (e) CTR-SLIM-0 against IPAPA, and

(f) CTR-SLIM-0 against MIPAPA

is approximated by averaging over 100 independent experi-

ments. The performance of the proposed CTR-SLIM-0 algo-

rithm is illustrated in Figs. 1(a) and 1(b), for different values

of L and m. The smoothing parameter in (11) is set equal to

ν = 0.9. The best performance is achieved when the slid-

ing window data size is set equal to L = 50 and the num-

ber of the cyclically updated weights at each time instant is

m = 10. Compared against the exponentially forgetting win-

dowing Recursive LS (RLS) algorithm [2] with a forgetting

factor set equal to β = 0.962, the proposed algorithm pro-

vides an improvement of about 8dB in the estimated MSD.

The performance of the APWL1 algorithm [7] for differ-

ent values q of the used hyperslabs1 is shown in Fig. 1(c). The

choice of q = 80 results in the best performance, which is

however outperformed by the proposed scheme, further not-

ing that the APWL1 requires the knowledge of the true num-

ber of the non-zero elements in cM (n), which is a rather

strong assumption in the context of system identification.

The performance of the time recursive implementation of

the adaptive LASSO algorithm using the cycled coordinate

descent approach [4], implemented as it is detailed in Algo-

1The remaining parameters of the APWL1 algorithm are set as it is de-

scribed in the Matlab implementation available by the authors [7] in http :
//cgi.di.uoa.gr/̃ stheodor/SPAL.zip

rithm 2 (CCDRWL) of [8], using the exponentially forgetting

RLS estimates as weights is illustrated in Fig. 1(d). The regu-

larization parameter λn is computed as it is has been proposed

in [7], with a parameter C tuned for the best performance at

C = 0.0005. Clearly, the proposed algorithm exhibits better

convergence and tracking characteristics than those obtained

using the CCDRWL approach.

The performance of the IPAPA and the MIPAPA algo-

rithm [25] is illustrated in Fig. 1(e) and 1(f), respectively, for

various values of the projection order (here designated by q).

The value of the parameter α is set equal to α = 0.9 in both

algorithms, while μ is set equal to μ = 1 and to μ = 0.1 for

the IPAPA and the MIPAPA algorithms, respectively. When

the IPAPA is considered, the choice of q = 30 results in an

almost similar performance as that obtained by the proposed

scheme, noting however that in this case the cost of imple-

menting the IPAPA algorithm is about 3.5 times more than

that of the CTR-SLIM-0 approach (m = 10). On the con-

trary, the MIMAPA implementation (q = 30) is about 2 times

cheaper than that of the proposed scheme, at the expense of

some degradation in the rate of convergence.

It is worth noting that the assumption that the noise vari-

ance σ2(n) is constant and is given, has been adopted solely

for reasons of comparison with available schemes [4, 7, 8]. It



can be relaxed allowing for pure adaptive estimation of the

noise variance. This is the subject of ongoing research and

results will appear in forthcoming publications.

5. CONCLUSION

In this paper, a novel time recursive implementation of the

SLIM algorithm is proposed in the context of adaptive sys-

tem identification. A time recursive scheme is built up for

the SLIM algorithm, able of updating the sought parameters

on a sample by sample basis. A fast implementation is de-

rived, based on cyclically reloading of the weight elements,

offering a significant reduction in the required computational

load. The proposed adaptive algorithm offers improved con-

vergence speed and tracking ability compared to other exist-

ing schemes at an affordable computational cost. The per-

formance of the proposed approach is illustrated by means of

computer simulation, in the context of adaptive identification

of rapidly time varying linear systems.
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