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ABSTRACT
This paper studies denoising of images contaminated with
additive white Gaussian noise (AWGN). In recent years,
clustering-based methods have shown promising perfor-
mances. In this paper we show that low-rank subspace
clustering provides a suitable clustering problem that min-
imizes the lower bound on the MSE of the denoising, which
is optimum for Gaussian noise. Solving the corresponding
clustering problem is not easy. We study some global and
local sub-optimal solutions already presented in the literature
and show that those that solve a better approximation of our
problem result in better performances. A simple image de-
noising method based on dictionary learning using the idea
of gain-shaped K-means is also proposed as another global
suboptimal solution for clustering.

Index Terms— Image denoising, data clustering, dictio-
nary learning, sparse representation

1. INTRODUCTION

Consider the problem of estimating a clean version of an
image contaminated with additive white Gaussian noise
(AWGN). A general approach for denoising is to divide
the noisy image into some (overlapping) small blocks, then
de-noise each block, and finally obtain the overall estimate of
the clean image by averaging the de-noised blocks [6].

The signal model is as follows,

yi = zi + ni (1)

where yi ∈ RN is the vector form of the ith block of the noisy
image, zi is the vector form of the ith block of the original
image, and ni is a zero-mean AWGN, each of its enteries
having variance of σ2.

Numerous methods have already been proposed in the lit-
erature for image denoising. Some methods are based on
defining a neighbourhood for each block and weighted av-
eraging, as in [1-4] which work in the spatial domain. The
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method proposed in [5], named as BM3D, is similar to [1-
4], but its processing is performed in the frequency domain.
BM3D constructs a three-dimensional matrix for each image
block by grouping those two-dimensional blocks that are sim-
ilar to it. Then, a 3D-DCT filtering is performed which pro-
vides a good estimate of the clean version of each block.

Elad and Aharon [6] suggested a new approach based on
dictionary learning. They used K-Singular Value Decomposi-
tion (K-SVD) algorithm to produce a global dictionary using
the noisy image blocks. The clean estimate of each de-noised
block is estimated by decomposing noisy blocks in the ob-
tained dictionary using a sparse coding algorithm.

Local grouping or similar blocks clustering are important
factors in the success of some methods including [2], [5], [8]
and [12]. Dictionary learning based denoising methods can
also be seen as performing some kind of image blocks clus-
tering. For example, K-SVD is a generalization of K-means
clustering algorithm. So, the clustering or grouping has a cru-
cial role in image denoising which will be studied in more
details in this paper.

In this paper, we introduce the problem of efficient clus-
tering based on minimizing the mean square error (MSE)
lower bound of denoising derived in [11]. Although the min-
imization of this lower bound does not guarantee that the
estimation error is minimized, some state of the art methods
are in fact implicitly solving our derived problem. Some
of the previously suggested clustering-based approaches are
studied and their performances are compared by performing
simulations. In this way, we actually provide a rough justifi-
cation for why some clustering-based methods perform better
than others. Moreover, inspired by the obtained problem,
we propose a simple but efficient image denoising algorithm
based on global clustering.

The rest of the paper is organized as follows. In Section 2
clustering of image blocks is studied and the efficient clus-
tering problem is introduced. We then discuss some global
clustering solutions for the resulting problem in Section 3.
Section 4 studies some algorithms based on local grouping
instead of global clustering. Finally, in Section 5, we numeri-
cally compare the performances of the solutions.



2. NOISY IMAGE BLOCKS CLUSTERING

As mentioned in the previous section, grouping or clustering
of similar blocks is an important factor in success of some
recent works. The lower bound of the MSE of image denois-
ing has been studied in [10] and [11]. This lower bound for a
block zi belonging to the kth cluster, whose data indices are
in Ωk, is as follows

E
[
∥zi − ẑi∥22

]
≥ trace

[(
Ji + Ĉ−1

k

)−1
]

(2)

where, Ji is the Fisher information matrix (FIM) for zi, ẑi
is the de-noised estimate of zi, and Ĉk is the estimated co-
variance matrix for the kth cluster. For i.i.d. and zero-mean
Gaussian noise, authors of [11] calculated Ji as

Ji =
|Ωk|
σ2

I, ∀i ∈ Ωk (3)

where, |Ωk| is the number of members of the kth cluster.
The question we are going to answer is “which type of

clustering is efficient?”. To this end, by simple calculations,
we firstly rewrite the right side of (2) in terms of the eigenval-
ues of Ĉk

E
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≥ σ2

|Ωk|
∑
j

λk
j

λk
j + σ2

|Ωk|
(4)

where λk
j is the jth eigenvalue of the estimated covariance

matrix of the kth cluster. We introduce the following cost
function which is a summation of the right-side of (4) over all
clusters (note that each cluster contributes to the cost function
proportional to the number of its members, so it is multiplied
by |Ωk|)

f(Ω) =
K∑

k=1

∑
j

λk
j

λk
j + σ2

|Ωk|
(5)

where Ω = {Ω1, ...,ΩK}. A clustering problem aims to find
Ω, i.e., the set of indices indicating the members of each clus-
ter. We define our efficient clustering problem as follows,

min
Ω

f (Ω) (6)

Assume that σ2/|Ωk| is small compared to non-zero λk
j ’s. By

this assumption,
∑

j

λk
j

λk
j+σ2/|Ωk|

approximates ∥λk∥0 where

∥ · ∥0 denotes the number of non-zero entries of a vector and
λk = [λk

1 , . . . , λ
k
N ]. In other words, problem (6) clusters the

data into some low-rank subspaces and guarantees that most
of the eigenvalues are zero for each cluster. So, we propose
to replace (6) with our new problem

min
Ω

f0 (Ω) ≜
∑
k

∥λk∥0 (7)

This problem tries to collect data in a cluster such that most
of their covariance matrix eigenvalues be zero. Solving this
problem is not easy. We study some sub-optimal solutions
previously used in image denoising, with a new simple solu-
tion which is proposed by this paper. We also roughly com-
pare them with the introduced clustering problem (7).

3. GLOBAL CLUSTERING

A well-known clustering method is the family of K-means
clustering algorithms [13], which have been used by K-LLD
[12] for image denoising. K-means clustering algorithm
solves the following problem

min
D

K∑
k=1

∑
j∈Ωk

∥yj − dk∥22 (8)

where, D = [d1, ...,dK ]. This problem can be written in the
following form which is a matrix factorization

min
D,X

∥Y −DX∥2F , ∀i, j : ∥xi∥0 = 1, xj
i ∈ {0, 1} (9)

where, Y = [y1,y2, . . . ,yL] (L is the number of blocks), xi

is the ith column of X, and xj
i is the jth entry of xi. This

problem implies that all entries of each xi must be equal to
zero except one of them. The non-zero element is forced to be
1. This restriction does not exist in the so-called gain-shaped
variant of K-means [13], which solves the following problem

min
D,X

∥Y −DX∥2F subject to ∀i : ∥xi∥0 = 1 (10)

This problem is a K-rank1 subspace (K-lines) clustering.
As can be seen in Fig. 1 (b) and (d), the obtained clusters by
gain-shaped K-means is in agreement with problem (7). This
is because only one eigenvalue of each cluster’s covariance
matrix is non-zero. For Fig. 1 (b) and (d) f0(ΩKmeans) =
5, f0(Ωgain shaped Kmeans) = 3, respectively.

Inspired by the simple approach (10), a suboptimal so-
lution for (7) can be obtained. We propose to construct the
dictionary using the obtained cluster centroids and dominant
principal components (PCs) of each cluster (generally, natural
images do not perfectly lie on rank-1 subspace as in Fig. 1.
So, the proposed dictionary also contains dominant PCs span-
ning details of each cluster). Those PCs should be added to
the dictionary that their corresponding eigenvalues are greater
than the noise variance. The noisy image blocks are then de-
noised in a way similar to the framework used in [6]. It will
be shown in Section 5 that this leads to a fast and efficient
denoising algorithm.

Another approach for clustering is dictionary learning in
sparse signal representation, which aims to solve the follow-
ing problem

min
D,X

∥Y −DX∥2F subject to ∀i : ∥xi∥0 ≤ τ (11)



Fig. 1. Comparison of clustering in raw data domain and
in the sparse-domain transformed data (as used in CSR and
LSSC) for some 2D data. (a) Raw data. (b) K-means clus-
tering on raw data (K=3). (c) K-means clustering on sparse-
domain transformed data using an over-complete dictionary
having 3 atoms. (d) Reconstruction of the data from their
sparse representations in (c), in the case of these data Gain-
shaped K-means directly results in (d).

Algorithm 1 Image denoising based on gain-shaped K-means
1: Task Denoise image patches Y = {yi}Li=1 from AWGN

(yi = zi + ni, ∀i).
2: Learning K cluster centroids using K-subspace [13].
3: Construct the dictionary, D, by the obtained cluster cen-

troids and significant PCs in each cluster.
4: Sparse code yi’s on D: yi ≈ Dxi.
5: Estimate zi’s by ẑi = Dxi.
6: Construct the denoised image using {ẑi}Li=1.

K-SVD is a well-known dictionary learning algorithm. Low-
rank subspaces found by K-SVD have overlaps. It means that
corresponding to each subset of the columns of D, there is
a low-rank subspace that K-SVD learns. Data that used the
same subset lie on a low-rank subspace but K-SVD learns a
very large number of low-rank subspaces for a set of training
data such that many of them are empty or low populated (refer
to Fig. 2, top). Actually, clusters found by K-SVD include
the data that have used the same dictionary columns. Note
that these clusters are not guaranteed to be low-rank. In the
simulation results we will see that our proposed method based
on gain-shaped K-means outperforms K-SVD.

4. LOCAL GROUPING

The derived problem (7) describes a suitable global cluster-
ing problem, while the state of the art algorithms do not per-
form global clustering, but instead use local patch-grouping.

Fig. 2. Top: K-SVD approximates data by a union of rank-2
subspaces. No rank-2 cluster can be found. Bottom: Group
sparsity constraint on X. There are three rank-2 clusters.

Translating global clustering to local grouping converts the
problem to,

Gi = min
G

∥λG∥0 subject to |G| ≥ τ, G ∈ Wi , i ∈ G (12)

where, Gi is group of blocks corresponding to the ith block,
λG is the vector of the eigenvalues of the covariance matrix
of Gi and Wi is a window around the ith block. The last con-
straint implies that the ith block must be a member of Gi. An
equivalent form of (12) can be written as,

Gi = max
G

|G| subject to ∥λG∥0 ≤ τ, G ∈ Wi , i ∈ G (13)

BM3D, a high performance image denoising algorithm, im-
plicitly uses (13) in order to perform local grouping. The
similarity criterion used in BM3D for performing local group-
ing is novel, in which firstly blocks are transformed using an
orthonormal transformation (e.g., DCT or DFT), then a pro-
jection onto a low-rank subspace is performed using hard-
thresholding of the coefficients of each block. In the new
transformed space, a simple Euclidean distance criterion de-
termines similar blocks to the ith block. Similar blocks to the
ith one lie nearly on a low-rank subspace, thus many of λGi ’s
are about zero and the constraint of (13) is satisfied.

The idea behind (13) can be used in another way differ-
ent from what BM3D uses. These denoising algorithms first
perform grouping using a rough criterion, e.g., Euclidean dis-
tance, then in the main denoising algorithm they obtain a low-
rank representative for each group and use it. The algorithm
suggested by Dong et al. (clustering based sparse represen-
tation or CSR) [7] which solves the following problem, is an
example of these types of algorithms

min
X,B

∥Y −DX∥2F + γ1
∑
i

∥xi∥0

+γ2

K∑
k=1

∑
j∈Gk

∥xj − bk∥22 (14)



where B = [bk], and bk is the centroid of the kth group.
Note that (14) does not optimize the dictionary. In fact, firstly
a global dictionary using K-means and PCA is learned which
is then used by this problem to simultaneously perform local
grouping and sparse coding, in an iterative procedure. The
first and second terms in (14) are similar to K-SVD prob-
lem, but the last term clusters the sparse-domain transformed
data. Figure 3 illustrates the effect of clustering data in the
sparse domain rather than the raw data. The traditional K-
means is not able to cluster data in low-rank subspaces for
raw data (f0(ΩKmeans) = 5), but in the case of the sparse-
domain transformed data, it successfully performs clustering
(f0(ΩCSR) = 3). Contrary to K-SVD, in which the members
of a cluster have used one column of D, problem (14) en-
courages the clustering to put data that have the same sparse
representations (structures) in one cluster.

Another local grouping based method is a novel approach,
called learned simultaneous sparse coding (LSSC) [9], that si-
multaneously performs group sparse coding [14] and group-
ing the similar patches. Group sparse coding implies that the
blocks within a group have similar sparse representations, like
CSR. This is achieved by jointly decomposing groups of sim-
ilar signals on subsets of the learned dictionary (as previously
explained, K-SVD fails to achieve this goal. See Fig. 2 for
comparison). They proposed the following cost function,

min
Xk

K∑
k=1

∥Xk∥p,q s.t. ∀k :
∑
i∈Gk

∥yi −Dxk
i ∥2 ≤ ϵ (15)

where, Xk is the coefficient matrix of the kth cluster, xk
i is the

ith column of Xk, and ∥X∥p,q =
∑

i ∥x[i]∥pq , with x[i] being
the ith row of X. Minimizing ∥X∥p,q with p = 1 and q = 2
(that is, the ℓ1 norm of the vector containing the ℓ2 norms of
the rows) implies that the number of engaged rows of X will
be limited. In other words, this cost function encourages the
data to have the same coefficient supports in a cluster. As the
data in the same cluster can be decomposed by few bases, the
rank of the data matrix in the same cluster will be minimized.
Thus a solution for (15) tries to minimize (12). In other words,∑

∥Xk∥p,q approximates ∥λGk∥0.

5. SIMULATION RESULTS

In this section, denoising results of some recent methods are
presented. Comparisons are performed separately for global
and local methods. K-SVD and our simple gain-shaped K-
means are presented as global methods. The presented local
methods include those introduced in [5], [7], [9] and [12]. Our
method is simulated similar to the framework of [6]. Running
time of K-subspaces (for identification of K-rank1 subspaces)
is about 40% of K-SVD for 20,000 blocks extracted from a
512 × 512 image. Both algorithms have the same amount of
error for the training set (depending on the noise variance) but
their size of dictionary are different. Performance comparison

of these algorithms can be seen in Table 1. we have used the
Peak Signal to Noise Ratio (PSNR1) as the performance cri-
terion. The PSNR values were averaged over 5 experiments,
corresponding to 5 different realizations of AWGN.

Table 1. Image denoising performance of global methods in
PSNR (dB). In each cell, right: K-SVD [12], left: our simple
method based on gain-shaped K-means

Table 2. Image denoising performance of local methods in
PSNR (dB). Upper right: K-LLD [12], upper left: LSSC [9],
bottom right: CSR [7], bottom left: BM3D [5]

In Table 2, the results of local methods are compared. As
can be seen, the methods of [7] and [9] discussed in section 3,
show good performances. Recently [15] investigated a com-
prehensive comparison of different image denoising methods.
They have shown numerically that BM3D, SCR and LSSC
have the best results.

In natural images, far away blocks have generally differ-
ent patterns, so, using all blocks may result in inappropriate
clustering. Moreover, non-overlapped clusters obtained by
global methods are not as flexible as the overlapped groups.
On the other hand, local grouping assigns appropriate groups
to each block. Although local methods have better perfor-
mance, global methods are able to extract salient features of
images and use it easily for de-nosing. By comparing the re-
sults of tables 1 and 2, we see that the performance of the pro-
posed global method is just about 0.5dB lower than promis-
ing local methods, which is not a high difference. However,
a common good property of both global and local methods is
that they exploit the low-dimensional characteristics of clus-
ters/groups in order to design a suitable denoising algorithm.

1PSNR is defined as 10 log10(255
2/MSE) and measured in dB.



6. CONCLUSION

This paper studied the problem of image denoising based on
clustering. Our goal was to obtain an appropriate clustering
to be exploited in denoising algorithms. We derived low-
rank subspace clustering as an efficient clustering problem
and suggest a new simple solution. We also studied some
existing solutions that approximately solve the resulting prob-
lem by global clustering or local block grouping. Clustering
based on sparse representations, as used by some previous
works, is a good idea to solve low-rank subspace clustering.
We saw that the state of the art methods for denoising are
based on local grouping and they approximate our derived
problem in order to obtain suitable groups of blocks.
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