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ABSTRACT

In the field of underlay cognitive radio communications, the
signal transmitted by the secondary user is disturbed by in-
coming signals from primary users. Thus, it is necessary to
compensate for this secondary-link degradation at the receiver
level. In this paper we use Dirichlet process mixtures (DPM)
to relax a priori assumptions on the characteristics of the pri-
mary user-induced interference. DPM allow us to model the
probability density function of the interference. The latter
is estimated jointly with the symbols and the channel of the
secondary link by using marginalized particle filtering. Our
approach makes it possible to improve the symbol error rate
compared with an algorithm that simply models the interfer-
ence as a Gaussian noise.

Index Terms— Dirichlet Process, Cognitive radio, Parti-
cle filtering

1. INTRODUCTION

Cognitive radio (CR) is a possible concept for the fifth genera-
tion of mobile network [1]. CR can be viewed as a smart man-
agement of the radio frequency (RF) spectrum. The objective
is to allow the mobile terminals, that use different commu-
nication standards, to coexist on the same frequency bands.
With CR, a new class of users appears: the secondary users
(SUs) as opposed to the primary users (PUs), who are the
users of the current communication standards (GSM, UMTS,
LTE, etc.). In contrast with PUs, the SU frequency bands
are allocated dynamically. SUs are able to reuse the PU fre-
quency bands. However, the interference level created by the
SU signal on the PU received signal must be null or below a
certain threshold. In order to use the PU frequency bands, dif-
ferent methods have been defined [2]: 1/Interweave, 2/overlay
and 3/underlay spectrum access. The interweave technique
consists in using, over a given time, one or several frequency
bands left idle by PUs. In that case, the spectral efficiency
of the SU communication depends on the a priori frequency
band left unused by PUs. Underlay and overlay techniques
allow a SU to reuse a frequency band used by a PU while
guaranteeing a minimum level of interference on the PU sig-
nal [3, 4]. The main difference between underlay and overlay

concerns the interference level created by the SU on the PU
received signal. On the one hand, in underlay, the interfer-
ence level of the transmitted SU signal must be maintained
under an acceptable a priori known threshold. For example,
spread spectrum access techniques are well appropriated in
that case. On the other hand, in overlay there is no power con-
straint at the SU transmitter. Indeed, based on some informa-
tion such as PU channel state information, a precoding and/or
post-coding can be applied on the SU transmitted and/or re-
ceived signals [6, 7, 8, 9]. Although the achievable secondary
system capacity for these techniques is relatively low com-
pared to the interweave case, they allow the CR to overcome
the errors of PU detection and provide near-continuous avail-
ability of the secondary link. However, the interference level
created by the PU on the SU received signal is not negligi-
ble. It may be reduced based on some a priori information
on the PU, but generally they are difficult to be obtained in
practice. Moreover, specific communication protocols, which
reduce the time to exchange useful information as well as the
spectral efficiency of the secondary link, are required.
In this paper we propose to reduce the PU interference on a
SU received signal when overlay or underlay communications
are considered. The proposed algorithm has the advantage of
not requiring any a priori information about the PU at the SU
receiver. Indeed, in the literature, many papers focus on the
primary system performance, whereas few contributions have
been proposed concerning the secondary link optimization.
This is even truer, when the secondary system has no a priori
information on the primary system. More specifically, our ob-
jective is to jointly estimate the propagation channel and the
symbols coming from the SU by reducing the effect of inter-
ference due to the PU. Our contribution is to model the pdf1

by a non-parametric model based on Dirichlet Process Mix-
tures (DPM). These highly flexible models, based on infinite
mixtures of Gaussian distributions, can represent numerous
probability density functions [5]. They have been recently
exploited in various applications including the modeling of
the multipath errors in GPS navigation [10, 11]. When using
DPM in CR, it is unnecessary to know the number of inter-
fering PU signals and their statistical characteristics. This is

1pdf standing for probability density function.



hence a great advantage.
The paper is organized as follows: Section 2 provides a DPM
overview. Section 3 describes the Bayesian modeling of the
problem. Section 4 describes the principle of the particle fil-
ter used for estimating the model variables. Finally, Section 5
provides the simulation results.

2. THE DIRICHLET PROCESS MIXTURE

Let {vt}Tt=1 be a T -length sequence of random variables with
unknown distribution F .
When considering the problem as non-parametric, F can be
written in the form

F (vt) =

∫
Θ

f(vt|θt)dG(θt), (1)

with θt ∈ Θ being a latent variable which contains the param-
eters of the user-defined mixed pdf f . Usually, f is a Gaus-
sian pdf with mean µt and variance φt. θt is then defined
as θt = [µt, φt]

T and one writes f(vt|θt) = N (vt;µt, φt).
G is the mixing distribution, assumed to be random. In a
Bayesian context, its prior distribution must be defined by the
user. The Dirichlet process (DP) appears as a possible solu-
tion. It can be interpreted as a distribution on the space of the
probability distributions. When G follows a DP distribution
with base distribution G0 and scale parameter α, one writes:
G ∼ DP (G0, α). Note that these distributions are discrete
but infinite. In addition the ”stick breaking” representation
allows us to express G as an infinite mixture of Dirac mea-
sures as follows [12]:

G(θt) =

+∞∑
j=1

πjδUj
(θt) et πj = βj

j−1∏
l=1

(1− βl), (2)

with Uj
iid∼ G0

2 representing the jth so-called cluster and
δUj

(θt) being the measure of Dirac with argument θt located
in θt = Uj . πj is the jth weight, sequentially defined with

βj
iid∼ B(1, α) with B3 being the Beta distribution. Combin-

ing (1) and (2) gives the unknown distribution F expressed as
follows:

F (vt) =

+∞∑
j=1

πjf(vt|Uj). (3)

Thus F is a infinite mixture of pdfs f(vt|Uj) the parameters
of which are contained in vector Uj .

Moreover DPs have interesting properties for inference.
They can be easily sampled by using the so-called Polya urn
model consisting in marginalizing G [13]. As a consequence,

2iid standing for independant and identically distributed.
3The Beta pdf of parameter a, b and argument β ∈ [0, 1] is defined as

B(β; a, b) = βa−1(1−β)b−1

B(a,b)
where B(a, b) is the Beta function.

the latent variables {θt}Tt=1 can be simulated sequentially ac-
cording to the following laws:

p(θt|θ1:t−1) =
1

α+ t− 1

t−1∑
j=1

δθj
(θt) +

α

α+ t− 1
G0(θt),

(4)
with θ1:t−1 = {θ1, ...θt−1}. It is clear that the high values of
α ease the appearance of numerous different ”clusters”.
The next section exploits DPM for modeling PU signals in
cognitive radios.

3. BAYESIAN MODELISATION OF THE PROBLEM

3.1. Received signal model

We consider a downlink communication4 where the primary
users and the SU transmit their information through an Or-
thogonal Frequency Division Multiplexing (OFDM) modu-
lation. In this scenario, in addition to the classical additive
white Gaussian noise (AWGN), the incoming signal at the SU
receiver is disturbed by an interference term. The latter is the
sum of the PU transmitted signals. Thus, the SU received
signal can be written as follows:

yn = hn,t ∗ xn + in + nn︸ ︷︷ ︸
vn

with in =

P∑
p=1

hpn,t ∗ xpn, (5)

where hn,t is the impulse response (IR) of the propagation
channel between the secondary base station (SBS) and the
SU. It should be noted that it may vary between two consec-
utive OFDM symbols. The subscripts t and n refer to the
OFDM symbol index in an OFDM frame and the sample in-
dex, respectively.
Furthermore, we use the following definitions:
• xn is the OFDM signal transmitted by the SBS,

• P is the number of the primary signals that interfer with
the SU,

• hpn,t represents the IR of the propagation channel between
the pth primary transmit antenna and the SU,

• xpn is the OFDM signal coming from the pth antenna,

• nn is the thermal noise (assumed AWGN) introduced by
the secondary receiver.

At the ouput of the SU OFDM demodulator, the signal corre-
sponding to the kth sub-carrier, k = 1, . . . ,K, is expressed
as follows5:

Y k
t = Hk

t s
k
t + V k

t with V k
t = Ikt +Nk

t , (6)

4From the base station to the mobile terminal.
5We assume the received secondary signal is time and frequency synchro-

nized.



where Y k
t , Hk

t , skt , Ikt and Nk
t are the kth discrete Fourier

transform (DFT) coefficients of yn, hn,t, xn, in and nn, re-
spectively.
Given the above considerations we aim at addressing the joint
estimation of skt , Hk

t and the unknown pdf of the additive
term V k

t for a given sub-carrier. In the following, for the sake
of simplicity we omit the superscript k.
In a Bayesian framework, this estimation is based on the pos-
terior pdf of the unknown variables conditionnally upon the
observations Y1:t = {Y1, · · · , Yt}. This distribution depends
both on (6) and on the prior distributions defined in the next
subsection.

3.2. Prior distributions

- Information symbols st: without loss of generality, the sym-
bols are assumed to belong to a BPSK6 modulation and to be
equally distributed.
- DFT of the propogation channel Ht = HRt + jHIt : we
consider a slowly time-varying channel. For that purpose, we
model the evolution of both the real and imaginary parts by
non-centered first-order autoregressive (AR) processes:

p(HRt |HRt−1) = N (HRt ;−a1H
R
t−1 + γ, φH),

p(HIt |HIt−1) = N (HIt ;−a1H
I
t−1 + γ, φH),

(7)

where a1 is the AR parameter, φH the variance of the driving
process and γ a parameter related to the mean µ of the AR
process by the formula µ = γ/(1− a1).
Furthermore, the equation (7) can be rewritten more com-
pactly by introducing the following vectors and matrices:
xt = [HRt , H

I
t ]T , u = [γ, γ]T , F = −a1I2 and Q = φHI2,

where I2 represents the identity matrix of size 2× 2:

p(xt|xt−1) = N (xt;Fxt−1 + u,Q). (8)

- Interferences and noise Vt = V Rt + jV It . In a general man-
ner, Vt can be written:

Vt =

P∑
p=1

K∑
n=1

Φn(xp1:K)hpn,t +Nt, (9)

where the Φn are linear functions.
Classically, the propagation channels hpn,t are assumed to be
complex Gaussian. Thus, conditionally upon the primary sig-
nals received by the SU, the real and imaginary parts of Vt
are also Gaussian. However, these information are usually
not available. Therefore, we propose to represent the distri-
butions of V Rt and V It by a DPM as defined by (1).
In the following, we define the vector θt = [(θRt )T , (θIt )T ]T .
It is composed of the latent variables corresponding to the
real and imaginary parts assumed to be independent. Using

6The proposed method can be applied whatever the constellation.

the Polya urn representation, the evolution of the vector θt is
described by the following distribution:

p(θt|θ1:t−1) = p(θRt |θ
R
1:t−1)p(θIt |θ

I
1:t−1) (10)

Besides, we select for the DPM a Normal Inverse Gamma
(NIG) base distribution. The pdf of the NIG law of arguments
θ = [µ, φ]T and parameters µ0, κ0, α0 et β0 is defined by:

NIG(θ;µ0, κ0, α0, β0) = N (µ;µ0,
φ

κ0
)IG(φ;α0, β0)

(11)
with IG(φ;α0, β0) the pdf of the Inverse Gamma law of argu-
ment φ and parameters α0 and β0. The latter makes it possible
to define jointly a prior model for the mean and the variance.
Taking advantage of the Polya urn representation in (4), the
pdf estimation problem is equivalent to the computation of the
joint posterior pdf of the latent variables p(θ1:t|Y1:t). Based
on the above Bayesian model, the extended state vector:

Xt = [st,x
T
t , (θt)

T ]T (12)

must be recursively estimated from the set of measurements
Y1:t. By using Bayes rule and conditional independences, the
transition distribution of the extended state vector can be fac-
torized as follows:

p(Xt|X1:t−1) = Pr[st; p1] p(xt|xt−1) p(θt|θ1:t−1). (13)

The model described in this section allows us to apply the
marginalized particle filter [14] introduced in the next section.

4. MARGINALIZED PARTICLE FILTER

The marginalized particle filter is based on the factorization
of the posterior pdf:

p(X1:t|Y1:t) = p(x1:t|θ1:t, s1:t, Y1:t)p(θ1:t, s1:t|Y1:t).
(14)

In our case, the evolution model of xt defined in (8) is Gaus-
sian and linear. Furthermore, conditionally upon to θ1:t

and s1:t, the measurement model defined in (6) becomes
linear Gaussian. Thus, given θ1:t et s1:t, the distribution
p(x1:t|θ1:t, s1:t, Y1:t) in (14) is Gaussian and the Kalman
filter can be used as an optimal estimator of the sequence x1:t

in the sense that it minimizes the minimum mean square error
(MMSE). The latent variables θ1:t and the symbols s1:t are
estimated using a particle filter as follows:

P̂N (θ1:t, s1:t|Y1:t) =

N∑
i=1

w
(i)
t δ

θ
(i)
1:t,s

(i)
1:t

(θ1:t, s1:t), (15)

where {θ(i)
1:t, s

(i)
1:t}Ni=1 represent the particles, {w(i)

t }Ni=1 are
the weights and N the number of used particles. Each par-
ticle is associated with a Kalman filter that computes re-
cursively the estimate of the posterior mean of xt, denoted



x̂t|t(θ
(i)
1:t, s

(i)
1:t), as well as the covariance matrix of the esti-

mation error Pt|t(θ
(i)
1:t, s

(i)
1:t).

Finally, the marginal posterior pdf of xt is estimated as a
mixture of Gaussian distribution:

P̂N (xt|Y1:t) =

N∑
i=1

w
(i)
t N (xt; x̂t|t(θ

(i)
1:t, s

(i)
1:t),Pt|t(θ

(i)
1:t, s

(i)
1:t))

5. SIMULATION RESULTS

We test our algorithm on simulated data corresponding to an
OFDM frame composed of T = 500 OFDM symbols. We
consider P = 6 primary signals (for example transmitted
from 3 primary base stations equipped with 2 transmit an-
tennas).
The symbols carried by the primary signals belong to a BPSK
constellation. The propagation channel of the SU is simulated
according to the model (7) where the parameters are set to in-
troduce a high temporal correlation: γ = 0, 02, a1 = −0, 98
and φH = 0, 004. The primary channels are simulated ac-
cording to a Rayleigh distribution without introducing tem-
poral correlation. Figures 1.(a) and 1.(b) correspond to the
histograms of V Rt associated to two different OFDM frame.
They are obtained from T OFDM symbols by taking into ac-
count the independency of the noises and the stationnarity of
their distributions. The histograms show that the statistics of
the interferences are highly multimodal. The pdf estimation
of V Rt obtained with our algorithm is superimposed on figure
1.(a) and 1.(b). Thus, although the estimated pdf are station-
nary, the particle filter does not have convergence issues as it
is usually the case with static parameters [14]. This is due to
the Polya urn representation of the DP which makes it pos-
sible to integrate out analytically the mixing distribution. In
this way only the dynamic latent variables have to be sam-
pled.
Figures 1.(c) et 1.(d) show the estimation (in solid line) of the
channel coefficients (in dashed line) HRt and HIt . Finally,
in table 1 are reported the estimation error percentages of the
symbols st as a function of the signal to interference ratio
(SIR). The first row corresponds to our algorithm whereas the
second row to an algorithm that only uses an overbounding
Gaussian distribution for the interference term. We can no-
tice that the symbol error rate decreases more specifically for
low RSI.

6. CONCLUSION

As a perspective, we can notice that the current model makes
the assumption that the interferences between consecutive
time instants are independent. Also widely spread in the lit-
erature, this assumption is not always satisfied in practice. To
take into account this temporal correlation, we are currently
studying new models based on time varying DPM.
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Fig. 1. (a)-(b) histograms and estimated pdf of V Rt , (c)-(d)
real and imaginary part evolution of Ht.

Table 1. Symbol error rate (in %)

SIR (dB) -5 -4 -3 -2 -1
without DPM 23,4% 26,8% 20,6% 14% 13,4%

with DPM 20,8% 20,6% 18,4% 13% 11,4%
SIR (dB) 0 1 2 3 4

without DPM 11,6% 7,8% 3,2% 3,6% 1,6%
with DPM 11% 3,9% 0,4% 0,6% 0,8%
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