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ABSTRACT
The problem of resolving frequency components close to
the Rayleigh threshold, while using time-domain sample se-
quences of length not greater than N, is relevant to several
waveform monitoring applications where acquisition time
is upper-bounded. The paper presents a compressive sens-
ing (CS) algorithm that enhances frequency resolution by
introducing a dictionary that explicitly accounts for spectral
leakage on a fine frequency grid. The proposed algorithm
achieves good estimation accuracy without significantly ex-
tending total measurement time.

Index Terms— discrete Fourier transform, spectral anal-
ysis, compressive sensing, super-resolution

1. INTRODUCTION

Frequency-domain waveform analysis is a problem for which
a variety of well-known solutions have been proposed in the
literature [1], [2]. A multisine waveform can be expressed as a
sum of cisoids, whose spectrum after sampling is a complex-
weighted spike train:

X(λ) =
∑

h

Ahe jφhδ(λ − λh). (1)

Here, as in the following, frequency λ ∈ [0, 1] is normalized
with respect to the sampling rate fs = 1

Ts
(i.e., λ = f Ts).

Non-parametric approaches based on the discrete Fourier
transform have been a workhorse of waveform analysis for
decades [3]. Given a sample sequence of length N, its dis-
crete Fourier transform (DFT) coefficients are located on a
frequency grid with step ∆λ = 1

N . Therefore, they represent
(1) exactly only when spike locations λh fall on this grid.

Reconstruction by DFT alone yields poor results for off-
grid frequencies, as the capability to resolve signal compo-
nents at closely spaced frequencies is limited by spectral leak-
age. Interpolation of DFT coefficients [4] can provide much
more accurate estimates of the weights Ahe jφh and the off-
grid normalized frequencies λh, with variances approaching
the relevant Cramér-Rao bounds [5]. However, required mini-
mum separation between adjacent frequencies is increased by

a factor kR, that depends on the kind of interpolation algorithm
and on the weighting (if any) applied to the time-domain sam-
ples.

Since kR > 1, the minimum allowed distance kR∆λ is
always significantly larger than ∆λ. Parametric approaches,
e.g., Pisarenko harmonic decomposition, MUSIC and ES-
PRIT, can allow much better resolution, but do so at the price
of greater computational complexity.

In this paper the problem is addressed by introducing a
finer frequency grid, with smaller step size ∆′λ, and relating
the set of N samples to N′ = P ·N coefficients of the DFT
defined on the finer grid, that is associated to an integer super-
resolution or refinement factor P =

∆λ

∆′λ
.

In the literature on compressive sensing (CS), super-
resolution algorithms based on this idea have been proposed.
Random waveform samples can be related to DFT coefficients
by way of the measurement equation:

x = WH
(N×N′) a + z, (2)

where x ∈ RN contains N time-domain samples x(n) and ele-
ments of a ∈ CN′ are DFT coefficients on the finer grid. Vec-
tor z represents additive zero-mean white noise with variance
σ2

z . In the standard approach WH
(N×N′) is a compressive ran-

dom measurement matrix defined as a N×N′ partial inverse
Fourier transform, whose rows are randomly drawn from the
full N′×N′ matrix. A fine-grid solution can be found by con-
vex `1 minimization, exploiting an a-priori sparsity constraint
on vector a, provided a minimum distance 4∆λ exists between
adjacent components [6], [7]. The issue of poor numerical
conditioning caused by highly coherent column vectors in
WH

(N×N′) is addressed by algorithms based on frequency inhi-
bition [8] or coherence band exclusion [9], the latter achieving
a minimum separation of 3∆λ. Components whose frequency
separation is closer to the Rayleigh threshold ∆λ seemingly
remain unresolvable by CS methods.

We show in this paper that a CS approach can indeed
resolve closely spaced frequency components, when x con-
tains sequentially sampled values, if the measurement equa-
tion is suitably defined to reflect this. Rather than adapt ma-
trix WH

(N×N′), as in [10], we exploit the feature by explicitly



introducing information about spectral leakage into the mea-
surement equation. With our approach this becomes:

x = WHDa + z, (3)

where WH is a full inverse DFT of smaller size N ×N and
spectral leakage is modelled by matrix D, of size N×N′. The
latter is in fact an overcomplete convolutional dictionary [11],
whose structure is presented in the next Section.

In the following, we discuss and characterize the proposed
CS-based high-resolution DFT analysis, proving by numeri-
cal simulation that components as close as 1.5∆λ can be suc-
cessfully resolved. As a further advantage, total acquisition
time for x in (3) is strictly NTS , whereas random sampling
acquisition of x in (2) approximately requires the time N′TS .

The improved lower bound on frequency separation is of
interest in monitoring applications, where it reduces the need
to acquire longer sample sequences for a given resolution,
thereby avoiding possible adverse effects on the capability to
track waveform variations.

2. DICTIONARY-BASED MEASUREMENT
EQUATION

The N-sample DFT of a waveform whose spectrum is given
by (1) is:

X̃
(
k
N

)
=

∑
h

Ahe jφh DN

(
k
N
− λh

)
e− j2π( k

N −λh)n0 (4)

with 0≤ k<N. The integer n0 is the index of the start sample
in the acquired sequence and DN(·) is the Dirichlet kernel:

DN(λ) =
sin πNλ
N sin πλ

e− jπ(N−1)λ (5)

which accounts for the leakage effect due to the finite se-
quence length N.

Fig. 1. Three-dimensional representation of matrix D [18].

Table 1. Minimum distance – equal-amplitude components.
P 3 5 7 9 11 13
∆l 5 8 10 13 16 22

|λ2 − λ1| · N 1.67 1.6 1.43 1.44 1.45 1.69
P 15 17 19 21 23
∆l 22 26 28 30 34

|λ2 − λ1| · N 1.47 1.53 1.47 1.43 1.48

DFT coefficients are in fact samples of the frequency-
domain convolution: X(λ)∗DN(λ), where the Dirichlet kernel
plays the role of a resolution or point spread function with
respect to the signal spectrum. Considering a finer frequency
grid with step size ∆′λ, without changing N, is equivalent to
sampling the same function at more closely spaced intervals.
Measurement equation (3) accounts for this by explicitly in-
troducing matrix D, with elements: dk,l = DN

(
k
N −

l
N′

)
, that

represents spectral leakage through values of the Dirichlet
kernel computed on a two-dimensional grid. The structure
of this matrix is graphically presented in Fig. 1.

CS algorithms look for the sparsest solution of (3). The
vector a having the minimum number of non-zero elements
(i.e., minimum pseudo-norm ‖a‖0) can be obtained either by
solving a constrained `1 problem, or by a greedy algorithm.
Taking the latter alternative, we use orthogonal matching pur-
suit (OMP) [12] to recover the support of a, that is, the set
S a of indices associated to non-zero vector elements al. For-
mally: S a = {l : |al| , 0, l ∈ [0, 1, . . . ,N′ − 1]}.

Fine-grid DFT coefficients are the non-zero elements of
a, whose values are determined by computing the pseudo-
inverse:

âS =
1
N

(
DH

S DS

)−1
DH

S Wx. (6)

In this equation, DS is a restricted dictionary matrix obtained
by keeping only the columns of D with index l ∈ S a, and âS

is the correspondingly restricted vector.
Support recovery is the critical part of the algorithm, as its

task is to identify waveform components. Its function is the
equivalent, on the finer frequency grid, of peak search in tra-
ditional DFT-based spectral analysis and, likewise, a signal-
to-noise ratio (SNR) threshold holds.

To find out the lower bound for frequency separation we
considered a signal with |S a| = 3, i.e., three cisoidal compo-
nents, each having unit amplitude and initial phase randomly
taken from a uniform distribution between 0 and 2π. In the
frequency domain two components, at frequencies λ1 and λ2,
had their distance progressively reduced, while the third, lo-
cated further away, was employed as a control element.

The limiting distance between the two close components
was determined when support recovery success rate dropped
below 100%. Results obtained in noiseless conditions are re-
ported in Table 1, where ∆l is the minimum difference be-
tween the indexes of the corresponding two non-zero vector



elements al1 and al2 , and |λ2 − λ1| · N = ∆l
P .

Considering a sequence length N = 256, trials were re-
peated for different super-resolution factors. We assigned to
P integer values between 3 and 23 (a range of non-critical
values for the numerical conditioning of D), selecting only
coprimes with N to prevent D from becoming singular. Fine
grid step size is thus approximately one order of magnitude
smaller than ∆λ. Within the given range for P the threshold
lies at approximately 1.5∆λ, that is, half the value required
by coherence band exclusion [9]. Variability in the computed
value of ∆λ · N is due to the fact that only frequencies falling
exactly on the finer grid have been considered, to avoid in-
teraction with finite-grid errors that are the object of separate
tests discussed in the next Section.

Results obtained for different values of the signal-to-noise
ratio (SNR) show that, for a sequence of N = 256 samples, S a

is correctly recovered down to approximately SNR = 15 dB.
This means 100% success rate in finding components whose
frequencies λh lie on the finer grid.

Plots of success probability versus SNR, for N = 256 and
different values of the super-resolution factor P, are presented
in Fig. 2. Some performance degradation is apparent as P gets
larger, since coherence among the columns of D is increased
as well. Nevertheless, OMP can still achieve a success rate in
excess of 90% with SNR = 10 dB and P < 15.

Fig. 2. Probability of successful support recovery for different
values of SNR and super-resolution factor P.

3. FINITE-GRID ERROR AND NOISE

Amplitude estimation by (6) can yield accurate estimates,
whose covariance with noisy data is:

cov[âS ] =
σ2

z

N

(
DH

S DS

)−1
. (7)

Matrix DH
S DS approximates the identity for component sepa-

rations greater than ∆λ, so that amplitude estimates are, for
practical purposes, uncorrelated and their variance is close
to the single-component Cramèr-Rao bound [14]. This was

Fig. 3. Amplitude estimation for a single off-grid component.

confirmed by a set of 100 simulations, repeated for different
values of SNR, considering again the three-component sig-
nal introduced in the previous Section. A super-resolution
factor P = 11 was selected as it is a prime integer and ap-
proximately corresponds to an order-of-magnitude improve-
ment of the frequency grid step size, that is, equivalent to
what can safely be achieved in practice by the interpolated
DFT approach [4]. The first two waveform components were
placed quite close to each other, at (λ2 − λ1) · N = 14

11 = 1.27,
while the third, included as a far-distance reference, was at
(λ3 − λ2) · N = 292

11 = 26.5. Over a wide range of SNR val-
ues, estimated amplitude variances differed very little among
them, their values being only marginally larger than the quan-
tity σ2

z
N .

Component frequencies may not actually coincide with
grid points, therefore to a more limited extent leakage can still
be present. To show how amplitude estimates are affected, the
plots of Fig. 3 were obtained by varying the frequency of a
single sinusoidal component in a ±0.5∆′λ neighborhood of a
fine-grid point kh

N′ . In the noiseless case, relative error in am-
plitude estimation is almost exactly 1 − DN(∆′λ) and depends
on the scalloping loss associated to the Dirichlet kernel [13].
The largest error occurs for |λ| = 0.5∆′λ, but attenuation is
much smaller than the Dirichlet kernel worst-case scalloping
loss, since DN(0.5∆′λ) � DN(0.5∆λ) even with the moderate
super-resolution factor P = 11 employed for the plots.

Fig. 3 also presents an example where signal samples are
affected by zero-mean random white noise with SNR = 20 dB.
The plot shows that estimate variations caused by noise can
be considerably larger than scalloping loss effects. To further
analyze the latter aspect, a set of 100 simulations with a sin-
gle sinusoidal component and SNR = 20 dB was repeated at
a number of frequencies within ±0.5∆′λ of a fine-grid point.
In this case the total root-mean-square error is a more useful
performance indicator than pure variance, since the resulting
mean deviation from reference values is significant. This is
plotted in Fig. 4 and, when compared with Fig. 3, shows the
considerable impact of noise.

4. SUPPORT RECOVERY FOR LOW SNR

The success rate of the non-linear support recovery stage in-
cluded in the CS algorithm drops significantly when SNR gets



Fig. 4. Total root-mean-square error for amplitude estimation
of a single off-grid component, with SNR = 20 dB.

below a certain limiting value, as shown in Fig. 2. This
performance can be enhanced, at the cost of a moderate in-
crease in measurement time, by jointly processing a set of
time-shifted but strongly overlapped N-sample sequences.

For this purpose we consider a set of M measurement vec-
tors xm, with 0 ≤ m < M, each containing N sequentially
acquired waveform samples. The index of the first sample in
each sequence is known, since one may start from 0 for the
first acquisition, and simply record the index difference at the
start of subsequent records. With this convention, the start
index of a sequence will be indicated by nm and n0 = 0. Set-
ting ∆n = nm+1 − nm, the total acquisition length becomes:
N + (M − 1) · ∆n.

To understand the effect of an index shift on the measure-
ment equation, it is useful to consider DFT expression (4).
Given a sample record starting at nm, each complex term in
the summation on the right-hand side has the form:

Ahe j(φh−2πλhnm)DN

(
k
N
− λh

)
e− j2π k

N nm , (8)

where the exponential term at the end of the expression is
independent of the frequency λh. This can actually be set to
zero assuming that, whenever a DFT is computed, the time
index runs from 0 to N − 1, rather than from nm to nm + N − 1.

Each vector xm can therefore be associated to a measure-
ment equation of the form (3): xm = WHDam + zm, where
vectors zm are uncorrelated, being time-shifted with respect to
each other. On the other hand, the net effect of an index shift
on the waveform-related term is a phase rotation of the com-
plex weight associated to the h-th waveform component, by
the quantity −2πλhnm. Neither magnitude Ah nor, more im-
portantly, frequency location λh are affected. Consequently,
the support set S a is common to all vectors am.

After arranging the set of measurement vectors into an
N×M matrix X = [x0, x1 . . . , xM −1], our problem can be for-
mulated by means of a multiple measurement vector (MMV)
equation with jointly sparse support [15]:

X = WHDA + Z, (9)

with Z = [z0, z1 . . . , zM − 1]. Matrix A, with size N′×M, can
be factorized as:

A = diag{a}R. (10)

where diag{a} is a diagonal N′×N′ matrix whose non-zero
entries are the elements of vector a. The M columns of R
contain the phase rotation terms defined at each point of the
fine frequency grid for each time shift nm.

For the measurement correlation matrix XXT the follow-
ing equality holds:

XXT =WHD

M−1∑
i=0

aiaH
i

DHW +

M−1∑
i=0

zizT
i (11)

where, as already noted, white noise vectors are uncorre-
lated. Therefore, we can apply singular-value decomposition
(SVD): XXT = VX · diag[λ2

i ] · VH
X , with λ1 > λ2, . . . , λN to

separate signal and noise subspaces. Since the signal sub-
space rank is equal to the order of the signal model (1), a
condition involving the cardinality of S a, namely: M > |S a|,
must be satisfied, which determines the minimum size of the
measurement correlation matrix.

Interpretation of SVD as a Karhunen-Loève expansion
for XXT suggests that, by increasing M, at low SNR val-
ues the larger eigenvalues will increase their energy without
increasing in number, whereas noise-related eigenvalues will
increase in number, but not in amplitude. This is shown in the
plots of Fig. 5, where the eigenvalue profile of the measure-
ment correlation matrix for a waveform with three cisoidal
components is presented for different values of SNR. The
value M = 10 was chosen so that a suitable number of noise-
related eigenvalues could also be calculated, evidencing that,
by setting a suitable threshold, signal-related eigenvalues can
be singled out from noise. This holds approximately up to
SNR = -8 dB, which is the threshold for the maximum likeli-
hood estimator [16].

In the low SNR case, therefore, SVD decomposition of
the measurement correlation matrix allows to carry out joint
support recovery for the MMV equation (9) by searching for
the sparsest solution, u, to the equation:

vX(th) = WHDAu, (12)

which, compared to the approach proposed in [17], has been
modified so that vX(th) is formed as a suitable linear combina-
tion only of the columns of VX whose corresponding eigen-
values are above the threshold. As the support of u is equal to
S a, estimates of waveform components can be obtained again
by (6), using any of the measurement vectors xi.

5. FINAL REMARKS

Spectral estimation of multisine waveforms is an extensively
studied problem. In this paper we addressed it by a CS-based
approach, showing that fine-grid frequency estimates can be
obtained and component amplitudes and phases reconstructed
exactly when normalized component frequencies are given by
lh/N′. Referring to a finite grid may appear as a limitation
compared to interpolation and parametric methods where, in



Fig. 5. eigenvalues of the measurement correlation matrix,
with M = 10, P = 11.

principle, frequency can be considered a continuous variable.
However, finite signal-to-noise ratio (SNR) places a lower-
bound as well, which is equivalent for all practical purposes
to just considering a discrete fine grid.

So far, performance of OMP in support recovery has been
found adequate for applications in electrical engineering, al-
lowing to correctly detect all components of analysed multi-
sine waveforms. Investigation into CS alternatives with better
noise robustness could allow to better exploit in the future the
potential of some of the features discussed in the paper.

For lower SNR values, locating components lying on the
finer grid requires preliminary subspace decomposition of a
measurement correlation matrix. As this is obtained from M
time-shifted sample sequences, each of length N, just a mod-
erate increase in measurement time is required [18].
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