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ABSTRACT
In this paper we propose to cast the problem of authentication
of printed documents using binary codes into an optimization
game between the legitimate source and the opponent, each
player tries to select the best print and scan channel to mini-
mize/maximize his authentication performance. It is possible
to solve this game by considering accurate computations of
the type I and type II probability errors and by using additive
stochastic processes to model the print and scan channel.

Considering the print and scan models as Lognormal or
Generalized gaussian additive processes, we maximize the
authentication performances for two different security sce-
narios. The first one considers the opponent as passive and
assumes that his print-and-scan channel is the same as the
legitimate channel. The second scenario devises a minimax
game where an active opponent tries to maximize the prob-
ability of non-detection by choosing appropriate parameters
on his channel. Our first conclusions are the facts that (i) the
authentication performance is better for dense noises than for
sparse noises for both scenarios, and (ii) for both families of
distribution, the opponent optimal parameters are close to the
legitimate source parameters, and (iii) the legitimate source
can find a configuration which maximizes the authentication
performance.

Index Terms— Authentication, Hypothesis testing, min-
imax game, print and scan models.

1. INTRODUCTION

The authentication of printed materials, which consists in
bringing a forensic evidence that materials are genuine, is a
huge challenge nowadays and can be used to prevent forg-
eries of valuable items, such as identity documents, or prod-
ucts, such as drugs by securing their associated packages.
Authentication can be done either 1) by characterizing the
“fingerprint” of the package, for example by recording the
random patterns of the fiber of the package or the paper [1],
but such a system is practically heavy to deploy since each
product needs to be linked to its high definition capture stored

in a database, or 2) by relying on the degradation induced
by the interaction between the materials and a physical pro-
cess such as printing, marking, embossing or carving. Since
both the physical process and the matter are stochastic, the
interaction between the two entities can be considered as a
Physically Unclonable Function (PUF) [2] that cannot be
reproduced by the forger and can consequently be used to
perform authentication.

We study here the authentication system first proposed
by [3], and based on the use of a printed binary code to per-
form authentication. The whole system is depicted in Figure
1: the legitimate source prints an original secret random code
xN (a binary matrix ofN elements) on a document or a pack-
age and the receiver scans it to perform authentication as the
opponent may have manufactured his forgery and generates
his copied code. In order to generate this copy, the opponent
observes the printed and scanned version yN of xN (step 1 in
Figure 1) and extracts a binary code x̂N (step 2). This step
is unavoidable due to the fact that an industrial offset printer
can only use binary input to generate dots of inks. With this
second print and scan process, the copied code zN generated
by the opponent (step 3) has a different distribution than the
initial printed and scanned code yN . This distinction drives
the authentication system (step 4).

2. PRINT AND SCAN MODELS AND
AUTHENTICATION

2.1. Principle of the authentication system

The legitimate receiver observes a gray level code oN , and we
assume that the random observed sequence (ON | xN ) (con-
ditioned to the secretly shared binary code xN ) is independent
and identically distributed (i.i.d. ). The Neyman Pearson test
is expressed as:

L = log
P (oN | xN , H1)

P (oN | xN , H0)

H1

≷
H0

λ. (1)

where H0 is the hypothesis that the observed sequence comes
from an original source with distribution P (O | x ,H0), and
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Fig. 1. Principle of authentication using graphical codes.

H1 is the hypothesis that the observed sequence is a fake
and have distribution P (O | x, H1). Practically, distribution
P (O | x , H0) models one print and scan process used by the
legitimate parts, whereas P (O | x , H1) is the distribution
modeling the decoder, the printer used by the opponent part,
and the scanner of the legitimate receiver.

2.2. Asymptotic expressions of α and β

Before considering our optimization game in section 3, we
recall [4], where a method to compute reliably type I error
probability α (the probability to consider a genuine code as
a copy) and type II error probability β (the probability to not
detect a copy) has been presented. Contrary to the Gaussian
approximation of L which provides inaccurate error probabil-
ities when the threshold λ in (1) is far from its the mean value,
this solution uses the Chernoff bound [5] as very small error
probabilities of type I and II may be desired [6]. For i.i.d.
random sequences, the distribution of the random variable
L =

∑
i

`(Oi/xi) depends on the origin (H0 or H1) of the ob-

served code oN , and for any real number s, the semi-invariant
moment generating function of each `(Oi/xi) is µ`(s; Hj) =∑
x=0,1

µ`/x(s; Hj) =
∑

x=0,1

logEO|x,Hj

[
es`(O/x)

]
. Type I and

II errors may then be tightly expressed for sufficiently large

N (with approximately N/2 white and N/2 black dots), as:

α = Pr(L ≥ λ | H0),

→
N→∞

1

s̃0
√
Nπµ′′` (s̃0;H0)

e
N
2 [µ`(s̃0;H0)−s̃0µ′`(s̃0 ;H0)].

(2)
and

β = Pr(L ≤ λ | H1),

→
N→∞

1

|s̃1|
√
Nπµ′′` ((s̃1;H1)

e
N
2 [µ`(s̃1;H1)−s̃1µ′`(s̃1 ;H1)].

(3)
where µ′`(s̃j ; Hj) and µ′′` (s̃j ; Hj) are respectively the first
and second derivatives of µ`(s; Hj) at value s̃j such that
N
2 µ
′
`(s; Hj) = λ.

2.3. Models for the print and scan channel

In this paper we use two different families of distributions to
model the print and scan channel, but the general methodol-
ogy of this paper does not depend on the model and can still
be applied.

The first one is the Generalized Gaussian distribution
which has been chosen because it can model both sparse
and dense distributions. The second one is the Lognormal
distribution since it has been previously shown by Baras and
Cayre [7] that this distribution is an accurate model of the
print and scan channel. Note that other print and scan models
based on the gamma transfer function or additive noise with
input dependent variance can be found in [8].

The distribution TV |x(v | x) modeling the physical de-
vice, i.e. the association of a printer with a scanner, can be
written as (for x taking binary values):

- For the Generalized Gaussian distribution:

p(v | x) =
b

2aΓ(1/b)
e−(|v−m(x)|/a)b , (4)

where Γ(·) is the gamma function, m(x) the mean, and pa-
rameters a can be computed for a given variance σ2(x) =
var[V | x]:

a =
√
σ(x)Γ(1/b)/Γ(3/b). (5)

The parameter b is used to control the sparsity of the the
distribution, for example when b = 1 the distribution is
Laplacian, b = 2 the distribution is Gaussian, and b → +∞
the distribution is uniform.

- For the Lognormal distribution:

p(v | x) =
1

vs(x)
√

2π
e
− (log v−m(x))2

2s2(x) , (6)



where log(V | x) has a Gaussian distribution with meanm(x)
and variance s2(x). The mode of the distribution is M(x) =

em(x)−s2(x), and the variance is given by σ2(x ) = (es
2(x) −

1)e2m(x)+s(x)2 .
To provide values within [0, . . . , 255] to model a scan-

ning process, we quantize and truncate distributions (4) and
(6) . Each channel is parametrized by 4 parameters, 2 per
each type of dots. For the Generalized Gaussian distribution
the parameters are m(0) and σ(0) for black dots and m(1)
and σ(1) for white dots. The Lognormal distribution can be
parametrized by the standard deviations σ(0) and σ(1) and
the modes M(0) and M(1) respectively for black and white
dots.

Figure 2 illustrates different realizations XN , X̂N , Y N

and ZN in the case of a Generalized Gaussian distribution
when the main and the opponent channels have the same
mean and variance, for b = 1 (Laplacian distribution), b = 2
(Gaussian distribution) and b = 6, i.e. close to a uniform dis-
tribution. Figure 3 depicts truncated Lognormal distributions
having same modes but different standard deviations.

(a) (b) (c) (d)

Fig. 2. Example of a 20x20 code which is printed and scanned
by an opponent following a Generalized Gaussian distribution
for b = 1 (first row), b = 2 (second row) and b = 6 (third
row). Columns (a), (b), (c), (d) represent respectively XN ,
X̂N , Y N and ZN . Main and opponent channels are identical
with m(0) = 50, m(1) = 150, σ(0) = 40, σ(1) = 40 .

3. OPTIMAL CONFIGURATIONS FOR
AUTHENTICATION

This authentication problem can be seen as a game where the
main goal of the designer of the authentication system is, for
a given false alarm probability α, to find a channel that mini-
mizes the probability of misdetection β.

Practically this means that the channel can be chosen by
using a given quality of paper, an ink of appropriate density
and/or by adopting a given resolution. For example if the le-
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Fig. 3. Representation of the print and scan model for the
black dots (on the left) and the white parts of the paper (on the
right) for different standard deviations σ(0) = σ(1) = σ with
M(0) = 70 and M(1) = 150 for the Lognormal distribution.

gitimate source wants to decrease the noise variance, he can
choose to use oversampling to replicate the dots, on the con-
trary if the legitimate source wants to increase the noise vari-
ance, he can use a paper of lesser quality. It is important to
recall that because the opponent will have to print a binary
version of its observation, and because a printing device at
this very high resolution can only print binary images, the
opponent will in any case have to print with decoding errors
after estimation X̂ .

We analyze two scenarios described below:
• The legitimate source and the opponent have identical

printing devices (by devices we mean printer, ink, paper,
scanner), practically this means that they use exactly the
same printing setup. In this case the legitimate source will
try to look for the channel C such that for a given α, the
legitimate party will have a probability of misdetection
β∗ such that:

β∗ = min
C
β(α). (7)

In this case, the opponent is defined to be passive.
• The opponent can modify its printing channel Co, prac-

tically it means that he can modify one or several pa-
rameters of his printing setup. Actually, we assume that
he changes the variance of its noise given that it will be
the most efficient way for him to confuse the receiver.
The opponent thus tries to maximize the probability of
misdetection by choosing his adequate printing channel,
whereas the legitimate source will adopt a printing chan-
nel Cl which minimizes the probability of misdetection.
We end up with so-called a min-max game in game the-
ory, where the optimal β∗ is the solution of:

β∗ = min
Cl

max
Co

β(α). (8)

In this case the opponent is active since he tries to adapt
his strategy in order to degrade the authentication perfor-
mance.



For the Generalized Gaussian model and the Lognormal
model, we assume that, respectively, the means m(0) and
m(1), and the modes M(0) and M(1) are constant for all
the players in the different channels (which implies that the
scanning process has the same calibration for the two types of
images). We assume also that variances of black and whites
dots are equal at each channel and denote them σ2

m and σ2
o

for main and opponent respectively..

3.1. Passive opponent

Here the opponent undergoes a channel identical to the main
channel. The only parameter of the optimization problem (7)
is consequently σm. Figure 4.a and Figure 4.b present re-
spectively the evolution of β w.r.t. σm for α = 10−6 with
m(0) = 50, m(1) = 150 for the Gaussian channel, and with
different modes for the Lognormal distribution.

For each channel configuration, we can find an optimal
configuration, this configuration offers a smaller probability
of error for b = 6 than for b = 2 or b = 1.
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Fig. 4. Evolution of the probability of non detection w.r.t the
standard deviation of the channel (α = 10−6) for the Gener-
alized Gaussian distribution (a), and Lognormal distribution
(b).

3.2. Active opponent

In this setup the opponent can tune his variance σ2
o to confuse

the receiver with the higher β. Figure 5.a shows the evolutions

of β w.r.t σo for different σm when a Generalized Gaussian
channel is assumed. We can see that in each case it’s in the
opponent interest to optimize his channel.

Figures 5.b and 5.c shows the evolution of the best oppo-
nent strategy max

σo

β w.r.t σm. By comparing it with Figure

4, we can see that the opponent’s probability of non detection
can be multiplied by one or several orders of magnitude for
the Generalized Gaussian distribution (×106 for b = 1, ×105

for b = 2) or for the Lognormal distribution (×105 for each
mode separation) but stays the same when the distribution is
close to uniform (b = 6).
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Fig. 5. Evolution of opponent strategy β for the Generalized
Gaussian distribution for b = 2 (a), and the best opponent
strategy max(β) w.r.t the standard deviation of the channel
(α = 10−6) for the Generalized Gaussian distribution (b) and
the for the Lognormal distribution (c).



3.3. Analysis

When facing a passive opponent, it is not surprising to notice
that in each case β is important whenever σm is very small,
i.e. when the print and scan noise is negligible hence the es-
timation of the original code by the opponent is easy; or very
large; i.e. when the print and scan noise is so important that
the original and forgery become equally noisy. The legitimate
source will consequently avoid a channel that generates noise
of very small or very large variance.

For an active opponent, the active scenario offers a sad-
dle point satisfying (8) either for Generalized Gaussian or
Lognormal distribution. This means that even if the adver-
sary owns ideally perfect print and scan devices (σo → 0,
oN = x̂N ), it is not to his advantage to use it since the au-
thentication is still efficient due to the decoding errors he will
create by generating the binary code X̂N .

Another general remark is to notice that the optimal op-
ponent parameters are very close to the optimal parameters of
the passive scenario, which means that the adversary has little
room to maneuver when choosing his best attack (see Figures
4 (a) and 5 (b,c)) and nearly no room when the noise is close
to uniform (b = 6).

For Generalized Gaussian distribution, it is important to
notice that for distributions of same variance, dense distribu-
tions yields to better authentication performance than sparse
distributions for both scenarios (see Figures 4 (a) and 5 (b)).
This is due to the fact that a distribution close to uniform tend
to create a bigger overlap between the two decision regions
than a sparse distribution that will generate codes mainly ly-
ing in the original one.

For the Lognormal distribution we can notice that the au-
thentication performances are similar for different values of
modes, both for a passive and an active opponent (see Figures
4 (b) and 5 (c)). However, the larger the difference, the larger
the optimal standard deviation, which means that it is in the
designer strategy to force the opponent to generate decoding
errors in this case.

4. CONCLUSIONS AND PERSPECTIVES

In this paper we have proposed to cast the problem of authen-
tication of printed documents using binary codes into an op-
timization game between the legitimate source and the oppo-
nent, each player potentially tries to select the best print and
scan channel to minimize/maximize his authentication per-
formance. This game was possible by considering accurate
computations of the type I and type II probability errors and
by using additive stochastic processes to model the print and
scan channel.

We have shown that for both the Generalized and Lognor-
mal distributions the game can be tractable, and that it is in
the interest of the legitimate source to adopt a channel which
is close to the uniform distribution.

Our future work will consist in finding, using information
theoretic arguments, what can be the best additive channel for
this setup.
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