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Ilmenau University of Technology
Institute for Information Technology

Helmholzplatz 2, 98693, Ilmenau, Germany
anastasia.lavrenko@tu-ilmenau.de

O. Arikan

Bilkent University
Electrical and Electronics Eng. Dep.
TR-06800 Bilkent, Ankara, Turkey

oarikan@ee.bilkent.edu.tr

ABSTRACT
Compressed sensing allows for a significant reduction of the
number of measurements when the signal of interest is of a
sparse nature. Most computationally efficient algorithms for
signal recovery rely on some knowledge of the sparsity level,
i.e., the number of non-zero elements. However, the spar-
sity level is often not known a priori and can even vary with
time. In this contribution we show that it is possible to es-
timate the sparsity level directly in the compressed domain,
provided that multiple independent observations are available.
In fact, one can use classical model order selection algorithms
for this purpose. Nevertheless, due to the influence of the
measurement process they may not perform satisfactorily in
the compressed sensing setup. To overcome this drawback,
we propose an approach which exploits the empirical distri-
butions of the noise eigenvalues. We demonstrate its superior
performance compared to state-of-the-art model order estima-
tion algorithms numerically.

Index Terms— Compressed sensing, sparsity level, de-
tection, model order selection

1. INTRODUCTION

Compressed sensing (CS) is a recently emerged paradigm that
provides a framework to simultaneously compress sparse sig-
nals while measuring them. Most of the theoretical bounds
derived within CS are expressed in terms of the dimensional-
ity of the problem, including the sparsity level of the signal,
i.e., the number of non-zero elements in a proper represen-
tation. Moreover, the vast majority of efficient reconstruc-
tion methods, like greedy algorithms for example, rely on a
priori knowledge of the signal sparsity as well. However, in
practical applications such information is rarely available be-
forehand. One way to tackle this problem is to use cross-
validation as in [1]. Unfortunately, this requires performing
multiple signal reconstructions, at a significant cost in terms
of computational complexity. Therefore, a method to estimate
the sparsity level efficiently directly from the measurements
would be highly desirable.

Some initial steps to show that classical signal processing
problems such as detection, classification and estimation can
be performed directly in the compressed domain were made
in [2]. In [3] a compressive subspace detector is proposed,
where the sparsity level is known a priori. A close relation be-
tween sparse signal reconstruction and parameter estimation
with model order selection has been discussed in [4], where
the sparsity-promoting regularization parameter (which influ-
ences the model order of the sparse solution) is chosen ac-
cording to classical information criteria. However, the spe-
cific task of detecting the sparsity level from the compressed
measurements, to the best of our knowledge, has not been an-
alyzed yet.

In this contribution, by deriving an equivalent signal
model, we show that classical model order selection algo-
rithms (MOS) based on the analysis of the sample covariance
matrix can be applied. However, under a strong limitation on
the sample size, the performance of the available MOS algo-
rithms depends on the knowledge of the noise model and may
deteriorate significantly when the actual noise statistics are
different. In this contribution, we propose an alternative ap-
proach that explicitly accounts for the measurement process.
It does so by exploiting an empirical distribution of the noise
eigenvalues obtained during a training period, i.e., when only
noise is received. Numerical comparison of the proposed al-
gorithm, which we refer to as empirical eigenvalue-threshold
test (EET), with state-of-the-art MOS algorithms shows that
EET performs better for small sample sizes and a low SNR.

It is worth noting that the equivalent signal model that
allows for classical MOS (and the EET) is based on the avail-
ability of multiple snapshots of the mixture of signals and the
fact that the signals are incoherent (which implies that they
must change in time, e.g., be randomly modulated signals).
Although, the general CS setup does not impose any restric-
tions on the signal but its sparsity, there are applications
where the aforementioned assumptions hold. Examples of
such applications include sub-Nyquist sampling of multiband
signals, compressive signal localization, and radar signal pro-
cessing.



The remainder of the paper is organized as follows: a
compressed sensing data model is introduced in Section 2,
followed by the analysis of an eigenvalue-based sparsity level
estimation in Section 3. The proposed empirical eigenvalue-
threshold test (EET) is described in Section 4. Section 5
presents numerical results for a comparison between the pro-
posed EET algorithm with state-of-the-art MOS schemes.
Finally, Section 6 concludes the paper.

2. DATA MODEL AND PROBLEM FORMULATION

We consider a discrete compressed sensing formulation of the
following form

y(t) = Φ
T · s(t) + ny(t) = Φ

T ·A · x(t) + ny(t), (1)

where y(t) ∈ CM×1 are the compressed observations at the
time t of a signal s(t) ∈ CK×1 that is sparse in a basis
A ∈ CK×K with coefficients x(t) ∈ CK×1, i.e., x(t) con-
tains N � K non-zeros only. We assume that the support,
i.e., the positions of the non-zero elements in x(t) is constant
over a certain observation time window and that the different
sequences in the vectorx(t) are incoherent to each other (as it
is the case, e.g., for randomly modulated signals). The matrix
Φ ∈ CK×M in (1) is the measurement matrix with K > M ,
where (·)T denotesmatrix transpose, andny(t) ∈ CM×1 rep-
resents the additive noise.
In the CS setting there are different types of noise. As

discussed in [5], we could have “signal noise” that is added to
s(t) (or, equivalently to x(t)) or “measurement noise” that is
added to y(t). In the considered applications, e.g. CS for
multiband signal acquisition, the received signal inevitably
contains both of them. Therefore, we model the noise ny(t)
as

ny(t) = Φ
Tns(t) + nm(t), (2)

where ns(t) ∈ CK×1 and nm(t) ∈ CM×1.
Introducing a short-hand notation for the sensing matrix

according toB = Φ
T ·A ∈ C

M×K , (1) becomes

y(t) = B · x(t) + ny(t). (3)

We are interested in estimating the sparsity orderN from the
compressed observations y directly.

3. EIGENVALUE BASED SPARSITY LEVEL
ESTIMATION

To this end, we consider the covariance matrix Ry which is
defined as

Ry = E{y(t)y(t)H}, (4)

where (·)H denotes Hermitian transpose. Inserting (3) into (4)
we obtain

Ry = B ·Rx ·B
H +Rny

, (5)

with Rx being the covariance matrix of x andRny
the noise

covariance of ny.
Assuming the signal and the measurement noise to be in-

dependent random processes, the noise covariance Rny
can

be written as

Rny
= Φ

T ·Rns
·Φ∗ +Rnm

, (6)

where ∗ represents complex conjugation, whileRns
andRnm

are the covariance matrices of signal and measurement noise,
respectively. Equations (2) and (6) show that the noise covari-
anceRny

will depend on the measurement matrixΦ, the sig-
nal noise covariance matrix Rns

and the measurement noise
covariance matrixRnm

.
When the covariance matrix Rny

is fully known at the
receiver, we can perform prewhitening to the output vector
y(t). After the prewhitening stage, our observation model (3)
is transformed into

z(t) = Cx(t) + nz(t), (7)

whereC =
(
Rny

)−1/2
B and nz(t) is a white noise vector.

Due to the prewhitening stage, the covariance matrix of
the whitened observations z is given by

Rz = CRxC
H + IM , (8)

whereRx ∈ CK×K is a covariance matrix of the input signal
x(t). Note that under the assumptions on the x(t) described
in Section 2 and since x(t) is N -sparse, the rank of Rx is
only N � K . Let λz,1 ≥ λz,2 ≥ . . . ≥ λz,M denote the
ordered set of eigenvalues ofRz. We then have

λz,m =

⎧⎪⎨
⎪⎩

λs,m + 1, 1 ≤ m ≤ N

1, N + 1 ≤ m ≤ M,

(9)

where λs,m denotes the ordered set ofN non-zero eigenvalues
of the “signal” component of Rz given by CRxC

H. The
concrete values of λs,m depend on the correlation between
the different signals in x(t) as well as the matrix C . Based
on (9), the sparsity level N would simply be given by the
number of eigenvalues that are greater than one.
However, the covariance matrixRz is not known in prac-

tice, but it has to be estimated. Given a limited number of
snapshots t = 1, 2, . . . , T , let us denoteZ = [z(1), z(2), · · · ,
z(T )] ∈ CM×T ,X = [x(1),x(2), · · · ,x(T )] ∈ CK×T , and
Nz = [nz(1),nz(2), · · · ,nz(T )] ∈ CM×T . The covariance
matrixRz can be estimated from Z as

R̂z =
1

T
Z ·ZH = CR̂xC

H + R̂nz
+ R̂x,nz

, (10)

where R̂nz
= 1

T NzN
H
z is the sample noise covariancematrix

and R̂x,nz
is a cross term defined as

R̂x,nz
=

1

T

(
(CX)NH

z +Nz

(
XHCH

) )
. (11)



Let the eigenvalues of the sample covariancematrix R̂z be
given by λ̂z,m, m = 1, 2, . . . ,M . Due to the limited number
of observations, the estimated eigenvalues λ̂z,m differ signifi-
cantly from the ideal eigenvalue profile shown in (9). Firstly,
since R̂nz

�= IM , the noise eigenvalues are not equal to one
but vary around one (which leads to a decaying profile in the
ordered set of eigenvalues). Secondly, the cross term R̂x,nz

between the signal and the noise becomes non-vanishing.
At this point classical model order selection algorithms

(MOS) as, for instance, [6–8] can be applied in order to dis-
criminate between the signal and noise eigenvalues. How-
ever, such algorithms heavily rely on the assumption that the
noise nz(t) is indeed white. In order to perform prewhiten-
ing according to (7), the noise covariance matrix Rny

has to
be known. For instance, if both the signal and the measure-
ment noise from (2) are known to be white with elements that
have known common variances σ2

s and σ2
m for ns and nm,

respectively,Rny
can be computed simply as

Rny
= σ2

s ·Φ
T
Φ

∗ + σ2
m · IM , (12)

where IM being an M × M identity matrix. However, in
a more general case, e.g., when the noise statistics is not
known a priori, Rny

has to be estimated in advance. Prac-
tically, this would require collecting a training set N tr

y =

[ntr
y (1),n

tr
y (2), · · · ,n

tr
y (Ltr)] ∈ CM×Ltr of noise samples.

The setN tr
y can be obtained during a calibration stage from a

portion of the data that is known to contain only noise and no
signal. In the following section we propose an approach for
sparsity level detection that makes use of these training data
for estimation of the noise eigenvalues distribution.

4. EMPIRICAL EIGENVALUE-THRESHOLD TEST

We formulate the sparsity level estimation problem as a set of
binary hypothesis tests. For each test eigenvalue λ̂z,m of the
sample covariance matrix R̂z, the following hypothesis are
tested

H0,m : λ̂z,m ∈ Sn (13)

H1,m : λ̂z,m ∈ Snx,

where Sn and Snx are sets of noise only and noise plus signal
eigenvalues, respectively. Taking into account that the test
eigenvalues λ̂z,m are sorted in a descending order, the sparsity
level then is estimated simply as

N̂ = max
m:{λ̂z,m∈Snx}

(m). (14)

To differentiate between the two hypotheses, a classical
Neyman-Pearson (NP)-based detector can be used. The NP
detector maximizes the probability of correct detection Pd for
a fixed probability of false alarm Pfa. Let us denote the de-
sired probability of false alarm as α. The decision rule for

(13) can then be formulated as

λz,m

H1,m

≷
H0,m

ηm, where ηm = F̄H0,m(α), (15)

and F̄H0,m is a complementary cumulative distribution
function (CCDF) of the probability density function (PDF)
fH0,m(λz,m) corresponding to the hypothesesH0,m.
The direct usage of (15) requires the knowledge of the

PDFs fH0,m(λz,m). There is a large amount of results avail-
able for the asymptotic distributions of the sample eigenval-
ues λz,m under the hypothesis H0,m (“noise only”) for the
case of white Gaussian noise [7, 9, 10]. Recent achievements
in randommatrix theory allowed to extend some of the results
available for the white noise to the case of colored noise as
well [11]. However, these asymptotic expressions are derived
based on the limit theorems as of certain parameters tend to
infinity (for instance M or T , or both of them). The perfor-
mance of the algorithms based on such asymptotic estimates
deteriorates for limited signal dimensions. Therefore, we pro-
pose to use actual noise samples obtained during the training
period (as discussed in the end of Section 3) for the calcu-
lation of the empirical distribution of the noise eigenvalues
as an approximation of fH0,m(λz,m). Hence, it explicitly ac-
counts for both the actual signal dimensions and measurement
process.
In this way, during the training period, a set of L noise

eigenvalue profiles λ̂(�)
nz ∈ RM is obtained from the R̂(�)

ny =
1
T [n

tr
y (1),n

tr
y (2), · · · ,n

tr
y (T )][n

tr
y (1),n

tr
y (2), · · · ,n

tr
y (T )]

H

where � = 1, 2, . . . , L and L = �Ltr/T �. These are stacked

into one vector ξ =
[
λ̂
(1)T

nz , λ̂
(2)T

nz , . . . , λ̂
(L)T

nz

]T
∈ RM L .

Let us denote τ = (maxj(ξj)−minj(ξj))/Q, whereQ ∈ N.
The empirical distribution of the noise eigenvalues λ̂nz

is then
estimated from ξ as

f̂(λ̂nz
) =

Q∑
q=1

Pqδ (λnz
− (q − 0.5)τ − ξmin) , (16)

where δ(λnz
) is a Dirac delta function, ξmin = minj(ξj) and

Pq is

Pq = Pr[ξmin + τ(q − 1) ≤ λ̂nz
< ξmin + τq] =

=
1

ML

∑
{j:ξmin+τ(q−1)≤ξj<ξmin+τq}

1, (17)

with q = 1, 2, . . . , Q and j = 1, 2, . . . ,ML.
A unified threshold ηm = η for a decision rule in (15) is

derived by setting a parameter p so that

η = ξmin + (jη − 0.5)τ, (18)

where

jη = arg min
i=1,2,...,Q

∣∣∣∣∣∣

⎛
⎝

Q∑
q=i

Pq

⎞
⎠− p

∣∣∣∣∣∣
. (19)
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Fig. 1: Probability of wrong estimation PE (a) and estimated sparsity N̂ (b) as functions of the SNR for T = M

The parameter p can be seen as an analog of the parameter α
from (15). It asymptotically approaches the true probability
of false alarm with increasing L and increasing number of
snapshots T .

5. NUMERICAL RESULTS

For comparison of the proposed approach with the classical
MOS algorithms, we performed a series of Monte-Carlo sim-
ulations for the following tests:
• the information-theoretic-based Efficient Detection Crite-
rion (EDC) [6],

• the Exponential Fitting Test (EFT) which exploits the ex-
ponential profile of the ordered noise eigenvalues learned
from synthetically created noise samples [8],

• the proposed Empirical Eigenvalue Threshold (EET) test
described in Section 4.

Throughout the simulations, both the signal noise ns(t) and
measurement noise nm were modeled as i.i.d. circularly sym-
metric complex Gaussian white noise with variances σ2

s =
σ2
m = σ2

0 , where the total SNR is defined as 1/((K+M)σ2
0).

The matrix B from (3) was chosen randomly with entries
drawn from an i.i.d. CN (0, 1/K) distribution. The values of
the parameters K,M and N are listed in Table 1, where the
number of snapshots T used for calculation of the covariance
matrix R̂z was equal toM .
To assess how often the aforementioned algorithms obtain

the correct result, we calculate the probability of wrong esti-
mationPer, which is given as the percentage of the trials when
N̂ �= N . Additionally, in order to obtain deeper insight into
the nature of the error (i.e., whether the test tends to over- or
underestimate), we calculate mean estimated sparsity N̂ and
a posteriori probabilities of false alarm P a

fa and mis-detection

0 0.2 0.4 0.6 0.8 1
0
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0.4

0.6
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1

P a
fa

P
a m
d

ETT, SNR = 0 dB

ETT, SNR = 3 dB

ETT, SNR = 6 dB

EFT, SNR = 0 dB

EFT, SNR = 3 dB

EFT, SNR = 6 dB

Fig. 2: Operating characteristic P a
md vs P a

fa for T = M

P a
md defined as the percentage of the trials when N̂ > N and

N̂ < N , respectively.
Figure 1 shows the probability of wrong estimation Per

and the mean estimated sparsity N̂ as functions of the SNR
for the two considered MOS algorithms and the proposed
EET algorithm with p = 0.04 and p = 0.05, where the pa-
rameter p was tuned heuristically. From Figure 1a it is seen
that the proposed EET algorithm outperforms both EDC and
EFT in the low SNR regime. According to Figure 1b, all three
considered algorithms tend to underestimate the sparsity level
in the low SNR regime with proposed ETT test providing sig-
nificantly better performance.
In order to compare operating characteristic of the EFT

and ETT within a wide range of parameters p and F trg
fa (spec-

ified in Table 1), Figure 2 presents a posteriori probabilities of
false alarm and mis-detection. It shows that in the considered



Parameter K M N p P
trg

fa

Value 100 20 4 [0.01 0.3] [10−8
10

−1]

Table 1: List of parameters used for simulations.
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Fig. 3: Probability of wrong estimation PE as a function of L
for T = M , SNR = 5 dB

low SNR regime (SNR< 6 dB) ETT provides significantly
lower probability of the sparsity level underestimation for the
fixed probability of its overestimation. Although, the strat-
egy for finding an optimal value of the parameter p requires
further investigation,
Note that for the previous results, the number of ob-

servations Ltr used to obtain the training statistics for the
prewhitening stage and the EET was fixed to Ltr = 500T .
Thus, Figure 3 demonstrates the influence of the size of the
training set on the performance of the EET. It shows that the
probability of error decreases with increasing Ltr but only
mildly. This means that our test requires only a small number
of training samples to obtain the suitable thresholds.

6. CONCLUSION

In this paper we examined the problem of the estimation of
the sparsity level from the analysis of the compressed covari-
ance matrix. Working in the compressed domain has the ad-
vantage that no additional signal reconstruction is necessary.
By deriving an equivalent system model, we show that state-
of-the-art model order selection schemes can be applied, pro-
vided that several snapshots of the incoherent in the sparse
domain signals are available. However, this techniques are
impaired by how the measurement process influences the dis-
tribution of the noise eigenvalues. As a solution, we propose
the EET algorithm which exploits the empirical distribution
of the noise eigenvalues obtained during a training period.
Numerical comparisons of the proposed algorithm with state-
of-the-art model order selection schemes reveal its superior-
ity in terms of the probability of wrong estimation and the
mean estimation error for a low number of snapshots and a
low SNR.
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