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ABSTRACT

Cognitive radio is a viable technology for the next generation

of wireless communications. The ability to sense the electro-

magnetic spectrum and to enable vacant bands to other users

has been investigated in the past years. One important issue is

the use of an efficient spectrum sensing algorithm to monitor

the frequency band occupancy. Usually, the effects of fading

are overseen in the analysis of those algorithms. This paper

aims to evaluate the performance of a spectrum sensing algo-

rithm based on Jarque-Bera test. Rayleigh fading is conside-

red in this paper. Preliminary simulation results are provided,

to demonstrate the potential of the proposed strategy.

Index Terms— Cognitive Radio, Signal Processing,

Spectrum Sensing, Statistic Tests, Jarque-Bera Test, Ray-

leigh Fading Channel

1. INTRODUCTION

The electromagnetic spectrum is overloaded in some fre-

quency bands and is sub-utilized in others. Government

agencies stipulate technical criteria to authorize additional

frequency bands for allocation of new services [1]. The ob-

jective is to reduce the interference among devices operating

in near frequencies. As most of the spectrum is already allo-

cated, it is complicated to grant new licenses or to increase

the quality of the services in operation. On the opposite, some

frequency bands face low spectrum usage [2].

Spectrum scarcity and the inefficient use of this important

resource inspired the rising of new techniques to better ex-

ploit the electromagnetic spectrum. Cognitive Radio (CR) is

the key to extend the spectral efficiency, with opportunistic

access, for the available frequency bands [3].

Cognition refers to the process of knowing through per-

ception, reasoning, knowledge and intuition by the observa-

tion of an environment. Cognitive radio is a wireless com-

munication technique that monitors the spectrum and adapts
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its transceivers to occupy an available radio frequency chan-

nel (when temporarily not occupied by primary or licensed

users) in that time [4].

Spectrum users are classified as Primary (or licensed)

Users (PU) or Secondary (or cognitive) Users (SU). Primary

users are those who have a licence to operate in a specific fre-

quency band, while cognitive users do not hold authorization

to transmit and receive signals in that channels. A cognitive

user should be able to monitor the frequency spectrum and,

based on its observations, to find out if there is any licensed

user occupying the spectrum [5].

Cognitive radio is the technology that permits the veri-

fication of the availability of the electromagnetic spectrum.

Cognitive radio and its dynamic access capacity can be em-

ployed in several wireless applications [6]. Spectrum sensing

is the evaluation of the frequency bands that can be opportu-

nistically occupied by the cognitive users. The sensing should

be dynamic and should provide requirements to guarantee ac-

ceptable interference levels [7].

Traditionally, the spectrum sensing problem is formula-

ted as in the following. The probability distribution of the

detected signal under the two hypotheses can be compared to

a specific distribution in the spectral band of interest. In this

scenario, if samples of the received signal present a Gaus-

sian distribution when transmitted through an additive white

Gaussian noise (AWGN) channel, then the secondary user un-

derstands that there is a chance of transmission. Otherwise,

if the probability distribution of the gathered samples is diffe-

rent from the Gaussian, the cognitive user considers that the

channel is occupied.

However, the effects of fading represent an important is-

sue regarding the detection of signals in cognitive communi-

cations. Researchers evaluate how distinct fading models af-

fect the spectrum sensing in cognitive networks. Different fa-

ding models, which include Rayleigh, Nakagami, Rice, κ−µ,

among others, are subject to evaluation, and new detection

probability expressions have been found [8–10].

This paper analyzes the spectrum sensing based on sta-



tistic tests when the wireless channel is subject to Rayleigh

fading. The remaining of the paper is organized as follows:

Section II details the concept of spectrum sensing and the hy-

pothesis testing, as well as the most important spectrum sen-

sing techniques; Section III presents the main statistic tests

and the most relevant spectrum sensing algorithms based on

these tests; Section IV highlights the proposed algorithm and

Section V evaluates the preliminary results. Finally, Section

VI presents the conclusions and the perspectives for the con-

tinuation of this work.

2. SPECTRUM SENSING IN COGNITIVE

NETWORKS

Spectrum sensing is one of the main tasks in a cognitive ra-

dio network. Advantages of opportunistic spectrum alloca-

tion (such as higher bandwidth and lower error rates in the

transmission) can be achieved by monitoring the occupation

of a channel. If the channel is available, the cognitive user

can opportunistically occupy the bandwidth; otherwise, when

a primary user is transmitting in the channel, the frequency

band is not available for the secondary user.

The detection problem is analyzed as a binary hypothesis

model, defined as [3, 11]

y[n] =

{

w[n], if H0

w[n] + h · x[n], if H1
(1)

in which y[n] is the signal received by the CR during the ob-

servation time; x[n] is the transmitted signal of the PU; w[n]
is additive white Gaussian noise (AWGN) with zero mean and

variance σ2, and h is the channel gain due to the fading over

the signal [3, 11].

H0 indicates the absence of primary signal in the chan-

nel, while H1 indicates that the spectrum is occupied by a

PU (this occupancy can refer to a PU or to a SU). Based on

these hypotheses, one can define the probability of detection

Pd = Prob(signal detected|H1) and the probability of false

detection Pf =Prob(signal detected|H0). The objective is

to maximize Pd while minimizing Pf [3, 12].

Another important parameter is the probability of missed

detection Pm, which is the complement of Pd: Pm = 1 −
Pd = Prob(signal not detected|H1). The probability of a

wrong decision in the band occupancy is the weighted sum of

Pf and Pm [3, 12].

The following spectrum sensing techniques are used in

cognitive networks [3]: Energy Detection (ED); Matched Fil-

tering detection (MF); Cyclostationary (or Feature) Detection

(CD); Covariance based detection and other techniques can

be employed to improve the cognitive radio network opera-

tion. Also, the combination of two or more spectrum sensing

techniques can be investigated to obtain better results when

compared to these techniques individually. This approach is

known as hybrid sensing techniques [6, 13].

3. STATISTIC TESTS

Spectrum sensing algorithms can be divided in terms of the a

priori knowledge of the transmitted signal that the cognitive

user can obtain. Features such as the modulation technique,

noise variance and spread spectrum sequence, among others,

lead to an improved identification of the spectral occupation.

Although in real scenarios such characteristics are normally

unknown by the secondary users – spectrum sensing is gene-

rally blind (cognitive users must identify the spectrum holes

with no details of the primary user).

In view of the difficulty to obtain a priori information,

the usage of statistics from the primary signal is rising as an

alternative to spectrum sensing. In a channel with additive

white Gaussian noise, the transmitted signal has a specific

probability distribution; in the absence of the primary user,

only a Gaussian random variable with zero mean is detected.

Thus, as the normal distribution and its statistic parameters

are known, the cognitive user can decide on the availability of

a band by using these statistics [14].

In general, spectrum sensing strategies based on statis-

tic tests aim to determine the probability distribution from a

group of samples and to compare it with the target distribu-

tion. This approach is named goodness of fit (GOF). Accor-

ding to the hypothetical distributions, the hypothesis test is

defined as [15]:

• H0, if the samples fit the distribution;

• H1, if the samples do not fit the distribution.

Statistic tests can be classified as parametric or non-

parametric. If the distributions of the random variables are

previously known, the tests are named parametric. Otherwise,

if no information from the signal is available a priori, the tests

are classified as non-parametric tests. Non-parametric tests

allow the assumption of different hypothesis regarding to the

samples; although, these tests are less robust when compared

to parametric test under the same conditions [16].

Non-parametric tests are widely adopted for spectrum

sensing as the sensing is generally blind (with no previous

information from the primary user occupying the channel).

These statistic tests can be used to evaluate if the samples fit

the Gaussian distribution as well other distributions [14].

The main statistic tests described in the technical literature

are [17–19]:

• Pearson Chi-squareχ2 test: this test verifies the adherence

of a set of samples to a probability distribution; the statis-

tic test converges to a Chi-square distribution.

• Skewness: third standard moment of a distribution. For a

random variable X , the skewness S is given by

S =
µ3

σ3
=

E[(X − E[X ])3]

(E[(X − E[X ])2])
3

2

(2)

The skewness for a Gaussian distribution is zero [16].



• Kurtosis: fourth standard moment of a distribution. It is

the degree of flatness of a probability function near its

center. The kurtosis K of a random variable X is calcula-

ted as

K =
µ4

σ4
=

E[(X − E[X ])4]

(E[(X − E[X ])2])2
(3)

The value of the kurtosis for a Gaussian random process

tends to 3 as the sample size increases [16].

• Jarque-Bera (JB): the JB test is selected to verify the adhe-

rence to a Gaussian distribution. It is based on the skew-

ness and on the kurtosis of the samples, which are used

to be compared with the normal distribution. The Jarque-

Bera test is defined as

JB =
NS

6

(

S2 +
(K − 3)2

4

)

(4)

in which NS is the number of analyzed samples. If the

signal monitored is Gaussian, then the JB test results in a

Chi-square distribution with two degrees of freedom [14].

• Kolmogorov-Smirnov (KS): This test is selected when the

mean and the variance of the distribution is known. KS

test can be employed for a Gaussian or other distributi-

ons [16].

• Lilliefors: it is a modification of the Kolmogorov-Smirnov

test; the mean and the variance of the signal are unknown.

It is used only to test the fit to a Gaussian distribution.

• Anderson-Darling (AD): an adaptation from Lilliefors,

the adherence to a specific distribution probability is eva-

luated.

• Shapiro-Wilk (SW): another goodness of fit test for nor-

mal distributions. The SW test performs better for a small

set of samples if compared to KS or Lilliefors tests [16].

3.1. Spectrum Sensing based on Statistic Tests

Different statistic tests are adopted for spectrum sensing and

to detect spectral occupancy opportunities. A detected signal

in an AWGN channel follows a given probability distribution.

When no signal is transmitted the cognitive user only detects

the additive white Gaussian noise. Because this distribution

and its statistical parameters are known, the secondary user

can decide on the availability of a spectrum hole based on

known tests. Under the hypothesis H0 only AWGN noise

is detected in the channel and the samples fit the Gaussian

distribution. Otherwise, the signal does not fit the Gaussian

distribution and the H1 hypothesis is selected (which means

that the band is occupied by a primary user).

Some spectrum sensing algorithms based on statistical

tests are detailed in the following:

• Kurtosis test: after the samples are obtained, a Fast Fou-

rier Transform (FFT) processing is performed. The kur-

tosis is then calculated from the absolute values of the

FFT. The value of the kurtosis test is then compared to

a predefined threshold λ; if the value of K is higher than

λ, the detector understands that the channel is occupied

(H1 hypothesis); otherwise the cognitive user selects H0

and considers that there is a spectrum occupancy oppor-

tunity [17].

• Skewness and Kurtosis test: a spectrum sensing algorithm

named GHOST (Goodness of fit HOS Testing) was pro-

posed by [18]. It is based on the kurtosis and skewness

computed from the detected signal.

• Jarque-Bera test: the algorithms presented in [19] imple-

ment the JB test over the transmitted samples to compare

the statistical test with the predefined threshold λ. The JB

test presents the best performance, when compared to the

kurtosis or the skewness tests [15].

4. ALGORITHM FOR FADING COGNITIVE

NETWORKS BASED ON STATISTIC TESTS

Fading is an important effect to be considered in wireless

communications. This phenomenon induces random fluctu-

ations in the amplitude and phase of signals transmitted in

wireless channels. These effects degrade the performance of

the communication systems due to an increase in the error ra-

tes [20]. Nonetheless, the effects of the fading on the phase

of the signals are usually disregarded in several analyzes. In

this paper, the authors consider that fading affects only the

amplitude of the signals in AWGN channels.

Several authors evaluate how the fading corrupts the spec-

trum sensing. However, to the best of the authors’ knowledge,

the effects of fading on the spectrum sensing based on statis-

tic tests have not been explored. The objective of this paper is

to propose a novel algorithm that considers the effects of the

fading over the spectrum sensing based on statistical tests.

Figure 1 presents the performance of a Jarque-Bera de-

tector for a BPSK signal transmission in AWGN channel and

when affected by Rayleigh fading. 500 Monte Carlo simula-

tions are performed.

It can be seen that the performance of the detector is pe-

nalized by the effects of the fading. The probability of de-

tection for the JB test needs a better signal to noise ratio to

obtain higher Pd values. Also, a higher number of simulati-

ons would lead to flatter curves for JB without fading and JB

over Rayleigh fading, as the detection becomes more precise.

4.1. New Algorithm

The proposed algorithm is based on the statistical moments

computed for a signal affected by fading. All the moments

are multiplied with a degrading factor, which models the ef-

fects of the fading on the envelope of the signal that is de-

tected. When considering that the signal and the fading are

independent of each other, the fractional order moments of

the received signal y[n] can be written as [21]:
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Fig. 1. Probability of detection (Pd) as a function of the signal-

to-noise ratio (γ) for the Jarque-Bera test considering AWGN

channel and the Rayleigh fading channel.

E(|y[n]|k) = E(|x[n] ·R|k) = E(|x[n]|k) · E(|R|k), (5)

in which E(|R|k) is the k-th order moment of the fading mo-

del that affects the channel. As the Jarque-Bera test is ba-

sed on the third and fourth moments S and K , then one can

consider that the fading affects the expressions (2) and (3) ac-

cording to the relation (5) (if the independency between the

signal and the fading is observed).

Then, a new spectrum sensing algorithm based on statis-

tic test is proposed to deal with the effects of the fading in

the performance of the signal detection. Jarque-Bera test was

chosen as its performance was the better compared to other

statistic sensing methods (kurtosis and skewness). In terms

of the moments calculated in function of the k-th order of the

distribution of the fading, the skewness and the kurtosis of the

signal can be calculated by:

Sy = Sx · E[|R|3] (6)

Ky = Kx ·E[|R|4] (7)

And the weighted skewness and kurtosis of the signal trans-

mitted via the fading channel can then by written as [21]:

Sx =
S

E[|R|3]
(8)

Kx =
K

E[|R|4]
(9)

Finally, the new statistic test for Jarque-Bera under the above

assumptions is:

JBmodified =
NS

6

[

(

S

E[|R|3]

)2

+
( K
E[|R|4] − 3)2

4

]

(10)

In this work, Rayleigh fading was considered and the wireless

channel was simulated as operating over its effects. An appro-

ximation for the k-th moment for the Rayleigh distribution is

available at [22]:

E[|R|k] = (2σ2)
k

2 · Γ

(

k

2
+ 1

)

. (11)

5. SIMULATION AND RESULTS

First simulation efforts considered the transmission of a digi-

tal television signal over a AWGN channel. The effect of the

Rayleigh fading under the detection is compared when the fa-

ding is not present in the channel. Each sample image was

simulated with 25 frames and submitted to 2048 FFT proces-

sing. A Binary Phase Shift Keying (BPSK) signal with 5.000

symbols was generated and transmitted through the channel

under 500 Monte Carlo simulations. False alarm probability

Pfa was fixed in 0.1. Figure 2 presents the preliminary results

obtained via simulation.

-40 -30 -20 -10 0 10
0.5

0.6

0.7

0.8

0.9

1

γ (dB)

P
d

 

 

JB with fading

JB fading(new method)

Fig. 2. Comparison of the modified JB algorithm with JB un-

der Rayleigh fading.

One can verify that the proposed method performed better

when compared to the JB detector over fading. The modified

Jarque-Bera algorithm achieved a high detection probability

(Pd = 1) even for a small values of signal to noise ratio (SNR).

As the SNR is improved, the performance of the modified JB

test presents a degradation in its performance and finally the

probability of detection converges to the unity.

The preliminary results still need some analysis to pro-

vide a better insight of the behavior of the modified JB algo-

rithm. A more precise threshold can improve the performance

of the detector in order to not degrade the performance when

the SNR increases. More simulations must be performed to

improve the spectrum sensing. In addition, more simulations

can lead to flatter curves for the JB test and the new JB test

for the Rayleigh fading.



6. CONCLUSIONS

A new spectrum sensing based on statistic tests is proposed.

Specifically, the new approach deals with the fading that can

corrupt a cognitive transmission in a AWGN channel. In this

paper, the Rayleigh fading is analyzed and preliminary re-

sults demonstrate the potential of the strategy. The setting of

the Jarque-Bera statistic test threshold can be determinant to

achieve a better performance in the spectrum sensing. Further

simulation efforts will be executed to achieve better perfor-

mance results for the proposed method. Additionally, the

modified algorithm will be extended to other fading models

aiming to compare its performance with the new strategy pre-

sented in this paper.
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