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ABSTRACT
In this work, an FFT architecture supporting variable FFT
sizes, 128∼2048/1536, is proposed. This implementation is a
combination of a 2p point Common Factor FFT and a 3 point
DFT. Various FFT output pruning techniques for this architec-
ture are discussed in terms of memory and control logic over-
head. It is shown that the used Prime Factor FFT as an FFT
in the 1536 point FFT is able to increase throughput by ex-
ploiting single tone pruning with low control logic overhead.
The proposed FFT processor is implemented on a Xilinx Vir-
tex 5 FPGA. It occupies only 3148 LUTs and 612 kb memory
in FGPA and calculates 1536 point FFT less than 3092 clock
cycles with output pruned settings.

Index Terms— FFT Pruning, FPGA Implementation,
LTE, Variable size FFT, Prime Factor FFT

1. INTRODUCTION

Signal processing applications are subjected to increase en-
ergy efficiency and processing throughput. The Fast Fourier
Transform (FFT) is one of the most essential algorithms of
signal processing. Numerous architectures for FFT imple-
mentations are proposed to achieve either the highest through-
put, minimum area, energy efficiency, resource optimization,
minimum memory usage or flexibility. So far in many ap-
plications and standards, the FFT window size is selected
as 2N because the Common Factor FFT (CF-FFT) which is
also known as Cooley-Tukey FFT, provides an efficient im-
plementation for an input and output size of 2N where N is
an integer. However, with the enhancements in wide-band
technologies, research has shifted towards FFT architectures
optimized for variable length and sparse FFT outputs. Ap-
plications in communication technologies, channel estima-
tion [1] and localization systems [2] tend to use wider bands
which contain spread spectral information among the chan-
nel bandwidth. The required FFT window size to process
this data is not necessarily of size 2N . Mixed-radix architec-
tures [3,4] are proposed as an alternative to radix-2 and radix-
4 CF-FFT architectures. The emerging communication stan-
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Fig. 1. LTE resource blocks, transmission and channel band-
width

dard, LTE (Long Term Evolution) requires 128-2048/1536
size FFT, providing a flexible spectrum support from 1.4 up
to 20 MHz [5]. In LTE systems, information is transmitted in
resource blocks each containing 12 subcarriers. The number
of resource blocks can be increased and distributed in both
time and frequency when needed. Using OFDMA (Orthogo-
nal Frequency Division Multiple Access), the occupied sub-
carriers will hence vary over time, according to the current
transmission bandwidth and the allocated resource blocks. In
order to save energy, throughput and area through the dy-
namic bandwidth and resource block allocation principles of
LTE, two new implementation challenges arise in the research
community:
1. Online programmable 128∼2048/1536 point FFT pro-

cessing: Considering the channel bandwidth and FFT
sizes for each band given in Figure 1, 128∼2048/1536
point FFT implementations are proposed in [6–8].

2. Efficiently pruning FFT output: Not all FFT outputs are
useful, because of the resource block allocation. Prun-
ing the unnecessary operations in the FFT reduces energy
consumption and increases throughput.
There are numerous FFT pruning techniques presented in

literature but only few of them can be implemented on hard-
ware, because the gain in pruning does not compensate for
the cost of the pruning control unit. Therefore, FFT pruning
is used only when the signal is very sparse in the frequency



domain [9], or the frequency bins to be pruned are fixed.
None of the mentioned techniques fulfill the requirements

of an efficient FFT processor that can work for variable FFT
sizes and different output pruning matrices. In this work, we
present an FFT processor to be used in LTE systems provid-
ing the desired flexibility. The FFT processor, which supports
128∼2048/1536 point FFT as well as output pruning, accom-
plishes both transmission bandwidth and resource block al-
location flexibility beneficial to LTE systems. In this work,
we are using a core block of a 128 point FFT with control-
lable twiddle factors to support 128∼2048 point FFT. We are
combining PF-FFT (Prime Factor FFT) with CF-FFT to sup-
port 3 · 29 = 1536 point FFT. Moreover, the control unit that
controls the overall operation is able to dynamically exclude
blocks for processing for selective output pruning.

This paper is organized as follows: first, a theoretical
overview on CF-FFT, PF-FFT and FFT pruning is given in
Section 2. Then the pruned FFT architecture combining
CF-FFT and PF-FFT is given in Section 3. The hardware im-
plementation of this architecture is presented and compared
with two implementations that tackle similar challenges in
Section 4. Finally, the paper is concluded in Section 5.

2. OVERVIEW ON FFT

A DFT (Discrete Fourier Transform) can be accelarated by
reducing the complexity of the operation given as

Xk =
N−1∑
n=0

xn · exp
(
−2πi
N
nk

)
k = 0, ..., N − 1. (1)

FFT algorithms calculate the outputs of the DFT much
faster. Further decreasing the computation time of the FFT is
possible with pruning, under certain conditions. Overviews of
two FFT algorithms and FFT pruning are given in this section.

2.1. Common Factor FFT

CF-FFT reduces the computation complexity when the FFT
size is rp where p and r are integers. r is the radix base of the
FFT. Typically, the radix base is 2 and 4; which are sufficient
for many conventional FFT operations. Alternatively, radix 3
and 5 architectures are also proposed for LTE systems [3].

CF-FFT for an FFT size of 2p where p1 < p < p2 can be
implemented using one 2p1 CF-FFT block with controllable
twiddle factors and a control unit.

2.2. Prime Factor FFT

PF-FFT is based on factorization of the FFT size into mu-
tually prime factors. Although, the number of factors is not
limited, in this work an FFT of size N will be divided into two
factors, N1 and N2, given as

N = N1. N2 (2)

provided that N1 and N2 are mutually prime. PF-FFT re-
indexes n and k in (1). n and k becomes

n = n1N2 + n2N1 modN, (3)
k = k1minv(N2, N1)N2 + k2minv(N1, N2)N1 modN, (4)

where operation minv(x, y) denotes modular multiplicative
inverse of x modulo y. After simplifications, the re-indexing
results in [10]

Xk =
N1−1∑
n1=0

(
N2−1∑
n2=0

xn1N2n2N1 · exp
(
−2πi
N2

n2k2

))

exp

(
−2πi
N1

n1k1

)
. (5)

By (5), an N2 point DFT operation inside an N1 point DFT is
obtained. In total, there are N1 DFT operations of N2 points,
and one N1 point DFT. The N1 point DFT operation is re-
peated for N2 times, producing N1 × N2 = N outputs as
desired.

For small numbers (M < 8), 2M − 1 prime factor factor-
ization requires less resources than 2M point Cooley Tukey
based FFT [10]. However, prime factor factorization based
FFT algorithms are currently implemented in software, no
hardware implementations exist.

2.3. FFT Pruning

Wider bandwidths are under consideration to reach higher
data rates but in order to maintain energy efficiency, the sig-
nal is sparsely distributed in the spectrum, upon application
needed. In other words, not the entire available spectrum but
only the selected parts of it contain necessary information,
so only a subset of output bins are needed. Therefore, cal-
culating the spectral information of each frequency bin is an
over-design. In order to eliminate this burden, researchers
proposed sparse FFT [9] and pruned FFT techniques for cog-
nitive radio and spectrum sensing [11–13]. By pruning the
outputs, the butterfly branches are pruned, so the number of
multiplications and additions is decreased. To eliminate op-
erations for unnecessary outputs conditional statements are
used. These conditional statements increases computation
time and not favored for hardware implementation [14, 15].
To reduce this burden, reconfigurable FPGA [16] and instruc-
tion level parallel architectures [13] are proposed. However,
all mentioned pruning techniques are based on 2N point FFT.

3. ARCHITECTURE

The FFT architecture of this work is a combination of the
widely used CF-FFT with a DFT. This architecture for the
1536 point FFT can be seen in Figure 2. Left side of the
figure is the CF-FFT part, the outputs of this part are used by
the DFT processors on the right side.



Fig. 2. PF-FFT to calculate 1536 point FFT

3.1. 128∼2048 Point FFT and Block Pruning

For the 128∼2048 point FFT 7∼11 FFT stages are needed.
A 128 point FFT has 7 stages which comprises the 7 stages
close to the FFT output for the 256∼2048 point FFT. For a
2M point FFT, 2M/128 times the 128 point FFTs and M − 7
input stages are needed. For example, as given in the Figure 2,
2 extra stages are needed to implement a 512 point FFT. After
the input data is processed by these input stages, a 128 point
FFT is run four times. The twiddle factors of both the input
stages and the 128 point FFT are programmable according to
the CF-FFT size.

With this architecture, block-wise pruning of the FFT out-
put is feasible. After the input stages are processed, one or
more 128 point FFTs can be pruned depending on the de-
sired output information. Block pruning is possible when the
number of outputs to be pruned is greater than 128 and they
are contiguous in natural or bit-reversed order. As expected,
this is a very rare situation; only a small portion of all pos-
sible subcarrier combinations are valid for pruning. As the
number of the informative subcarriers decrease, the signal be-
comes more sparse and the probability to meet a subcarrier
configuration that is valid for block pruning increases. Figure
3 shows the probability of valid block pruning versus sparsity.
When the sparsity of the signal is less than 2%, only 10% to
45% of the possible subcarrier combinations are suitable for
block pruning. Therefore, the advantage of block pruning is
negligible.

3.2. 1536 Point FFT and Single Tone Pruning

To build a 1536 point FFT, the prime factors of the PF-FFT
are chosen as N1 = 3 and N2 = 29. As explained in Section
2.2, three 512 point CT-FFT operations are followed by a 3
point DFT. This block operation can significantly benefit from
single tone output pruning, as we will illustrate below.

An example of output pruning in the 2M × 3 point FFT,
for M = 4, is given in Figure 4. The output indexes, k1

Fig. 3. Probability of valid block pruning versus sparsity in
the frequency domain

Fig. 4. Output pruning example with PF-FFT

and k2, are the output indexes of the DFT and the CF-FFT,
respectively. In the first step, all CF-FFT outputs are calcu-
lated. Therefore, all the outputs for k2 = [1, 2M ] are ready
before the DFT operation.

Single tone pruning is implemented by means of output
tone selection by the DFT control unit, therefore it is viable
for the 1536 point FFT. When pruning is enabled, the DFT
works only for the necessary combinations of CF-FFT, k2,
and DFT, k1. For example, to calculate frequency bin 16,
X(k = 16), the DFT reads the CF-FFT outputs at k2 = 0.
Inside the DFT unit, the multiply-add block which uses the
coefficients (W ) with k1 = 1 is run. This way, the outputs
which are not contiguous can be prunned.



Fig. 5. Programmable 128∼2048/1536 point FFT

128∼2048
/1536
point with
pruning

128∼2048
point

128∼512
point

Occupied slices 787 728 581

DSP48Es 30 14 14

Total Memory (kb) 612 594 252

RAM Blocks 22 22 9

Table 1. Resources for variable length FFT

4. HARDWARE IMPLEMENTATION

Radix-2 DIT (Decimation in Time) FFT is implemented using
a 128 point FFT core, a DFT unit, control units and RAMs as
given in Figure 5. The operation runs as follows: the main
control unit initializes CF-FFT size for the FFT control, DFT
unit and the interaction between them. The size of CF-FFT
means how many input stages will be used and how many
times the 128 point FFT core will operate.

The input stages and twiddle factors are controlled by
Stage Control. RAM0 and RAM1 become input and output
RAM at each stage in alternating turn.

For the 1536 point FFT, after the 512 point CF-FFT is
performed for 3 times, the output of the CF-FFT is read from
RAM1 and the DFT output is written to RAM0. When the
pruning is enabled, the CF-FFT output to be processed is se-
lected by Main Control via Stage Control. The exponential
factor for the DFT unit is also selected by Main Control. Im-
plementation is done on a Xilinx Virtex-5 (XC5VFX130T-
2FFG1738CES) FPGA. The resource usage is given in Table
1.

As given in Section 2.2, re-indexing uses modular arith-
metic and is not straightforward to generate inside an FPGA.

Fig. 6. Advance in latency with output pruned 1536 point PF-
FFT

Therefore, writing pre-calculated indexes into a look-up table
is preferred over generating the indexes on the FPGA. The
DFT and FFT units remain as they are, but a re-indexing vec-
tor is necessary for pruning. The re-indexing vector which
points the k1 and k2 indexes to be processed should be stored
in a memory. k1 and k2 addresses are 2 and 9 bits long respec-
tively. The total memory for re-indexing is 9900 bits for 900
subcarriers. That memory is the overhead of pruning. Using
this pruning method, the latency can be decreased from 3092
clock cycles down to 1646 cycles when 5 LTE resource blocks
(60 tones) are occupied. The improvement in latency for 36
to 900 subcarriers for a 1536-point FFT is given in Figure 6.

4.1. Comparison

To the best of our knowledge, none of previously proposed
FFT architectures for LTE supports variable window length as
well as output pruning at the same time. So, the architecture
is compared with two hardware efficient and high through-
put FFT architectures for LTE systems given in [6] which is
synthesized on 130 nm ASIC technology and [8] which is im-
plemented on Virtex-5 FPGA. Both of these designs employ
radix-3 support to compute 1536 point FFT.

These proposed architectures are compared by resource
utilization and computation time in clock cycles in Table 2.
Using PF-FFT instead of a mixed-radix architecture, leads to
a significant increase in throughput in typical LTE workloads
because it enables output pruning.

5. CONCLUSION

In this work, an FFT architecture supporting both variable
window sizes and output pruning is proposed. The FFT sup-
ports 128∼2048/1536 point FFT, as required by LTE systems.
Other FFT architectures proposed for LTE systems do not
enable output pruning. Using PF-FFT, our architecture fa-
cilitates output pruning, decreasing the computation time by



This work [6] [8]
LUTs (Virtex-5) 3148 NA 23807

Total Memory (kb) 612 NA 224

Area (kgates) NA 109 NA

Computation clk cycles
(2048 pnt)

8195 12345 3072

Computation clk cycles
(1536 pnt, 60-900 sub-
carriers)

1646-2906 9324 4224

Table 2. Comparison

half. The throughput can be doubled by means of output prun-
ing, with an overhead of a re-indexing memory of maximum
1.2 KB. Therefore, the architecture implemented on a Virtex-
5 FGPA increases throughput while maintaining the area.
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