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ABSTRACT
Most blind hyperspectral unmixing methods exploit convex
geometry properties of hyperspectral data. The minimum vol-
ume simplex analysis (MVSA) is one of such methods which,
as many others, estimates the minimum volume (MV) sim-
plex where the measured vectors live. MVSA was conceived
to circumvent the matrix factorization step often implemented
by MV based algorithms and also to cope with outliers, which
compromise the results produced by MV algorithms. Inspired
by the recently proposed robust minimum volume estimation
(RMVES) algorithm, we herein introduce the robust MVSA
(RMVSA), which is a version of MVSA robust to noise. As
in RMVES, the robustness is achieved by employing chance
constraints, which control the volume of the resulting sim-
plex. RMVSA differs, however, substantially from RMVES
in the way optimization is carried out. The effectiveness of
RVMSA is illustrated by comparing its performance in simu-
lated data with the state-of-the-art.

Index Terms— Hyperspectral imaging, spectral unmix-
ing, endmember identification, minimum volume simplex
analysis (MVSA), chance constraints.

1. INTRODUCTION

Hyperspectral unmixing (HU) aims at estimating the num-
ber of reference substances, also called endmembers, their
spectral signatures, and their abundance fractions in hyper-
spectral imagery [1]. In practice, hyperspectral unmixing is a
source separation problem [2]. Compared with the canonical
source separation scenario, the sources in hyperspectral un-
mixing are statistically dependent, and the observed mixture
is either linear or nonlinear in nature [3]. The linear mixing
model holds when the mixing scale is macroscopic [4, 5].

Linear unmixing techniques can be classified into statisti-
cal and geometrical-based [1]. The former category addresses
spectral unmixing as an inference problem, often formulated
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under the Bayesian framework, whereas the latter category
exploits the fact that the spectral vectors (under the linear
mixing model) are in a simplex whose vertices correspond to
the endmembers. The main research lines presented in recent
years under this framework belong to two different groups:
a) pure pixel based algorithms assume that the scene contains
at least one pure pixel per endmember [1]; b) more recently,
several algorithms dropped this assumption by assuming that
no pure pixels may be present in real hyperspectral scenes
[1,2, 6]. In this case, a widely used strategy is to fit a simplex
of minimum volume to the data set. Relevant works exploit-
ing this direction are the minimum volume constrained non-
negative matrix factorization (MVC-NMF) [7], the minimum
volume simplex analysis MVSA [8], the simplex identification
via split augmented Lagrangian (SISAL) algorithm [9], the
minimum-volume enclosing simplex (MVES) [10], the col-
laborative nonnegative matrix factorization [11] (CoNMF),
and the RMVES [12], among others (see [1,2] for an exhaus-
tive account of MV based algorithms).

The MV based approach to HU is quite appealing and un-
derlies a large number of blind HU methods introduced in the
last 20 years. The simplex of MV is, however, highly sensi-
tive to noise and outliers, what limits its applicability. Aim-
ing at endowing the MV criterion with robustness to outliers,
MVSA [8] replaces the hard abundance non-negativity con-
straint with a soft abundance non-negativity enforced by the
hinge function. This robust to outliers version of MVSA is
efficiently implemented by the SISAL [9] algorithm.

In this work, inspired by chance constraints [13] used in
the RMVES, we develop a robust to noise version of MVSA
(RMVSA). Although RMVSA solves the same problem as
RMVES, we adopt a different optimization strategy, which
turned out to be effective in terms of computational complex-
ity and of the quality of the estimates.

The remainder of the paper is organized as follows. Sec-
tion 2 describes the proposed RMVSA algorithm. Section
3 presents experiments with simulated data. A quantitative
assessment to other popular endmember identification algo-
rithms is also provided. Section 4 concludes the paper with
some remarks and future research lines.



2. ROBUST MINIMUM VOLUME SIMPLEX
ANALYSIS (RMVSA)

Let the data spectral vectors Y ≡ [y1, . . . ,yn] ∈ Rp×n be
a matrix holding in its columns spectral vectors yi ∈ Rp,
where p is the number of endmembers and n is the number of
pixels. We assume that a dimensionality reduction step (see,
e.g., [14]) was applied to the data such that the vectors yi ∈
Rp are the coordinates of the original vectors with respect
to a basis of the subspace spanned by the original measured
vectors. Under the linear mixing model, we have

Y = MS + W
s.t.: S ≥ 0, 1T

p S = 1T
n ,

(1)

where M ≡ [m1, . . . ,mp] ∈ Rp×p is the mixing matrix (mi

denotes the i-th endmember signature and p is the number of
endmembers), and S ∈ Rp×n is is the abundance matrix con-
taining the fractions of each endmember, 1m = [1, 1, . . . , 1]T

is a m × 1 vector of ones, W ≡ [w1 . . . ,wN ] accounts
for noise, and the notation (·)T stands for vector or matrix
transpose. Owing to physical constraints [15], for each pixel,
the fraction vectors should be no less than zero, and sum to
1. Therefore, the spectral vectors yi, belong to a simplex
set with vertices mi. MVSA aims at finding the matrix M
with minimum volume defined by its columns under the con-
straints in (1). As shown in [8], an equivalent formulation of
this criterion in the absence of noise is as the follows:

Q̂ = arg max
Q

log |det(Q)|

s.t. : QY ≥ 0, 1T
p Q = a,

(2)

where Q ≡M−1 and a = 1T
nYT (YYT)

−1.
MVSA solves problem (2) using sequential quadratic pro-

gramming (SQP). In addition to the criterion (2), a robust to
outliers version called SISAL [9] was also introduced. In this
robust version, the constraint QY ≥ 0 is replaced with a soft
constraint−1T hinge(−QY)1, where hinge(x) is an element-
wise operator that, for each component, yields the negative
part of x.

From (1) we have QY = S + QW. When the noise is
not negligible, the constraint QY ≥ 0 act on S + QW and
not only on S, inflating the estimated simplex with respect to
the true one. To mitigate this negative effect, and inspired by
the RMVES method [12], we replace the constraint QY ≥ 0
with the probability constraints P ([QY −QW]in ≥ 0) ≥
η, for i = 1, . . . , p and n = 1, . . . , N , where P (·) denotes
probability and [X]ij is the (i, j) component of matrix X.

Let qi denote the column vector formed by the ith row
of Q and assume that the noise random vectors wi, for i =
1, . . . , N , are Gaussian distributed with zero mean and pro-
jected covariance matrix Dw, where Dw = UT

p DUp. D
is the noise covariance matrix and Up is the affine projection
matrix to Rp. With this definition in place, we reformulate the

unmixing problem using probability constraints as follows:

Q̂ = arg min
Q
− log |det(Q)|

s.t. : qT
i yn ≥ Φ−1(η)

√
qT
i Dwqi,

1T
p Q = a,∀i ∈ {1, · · · , p},∀n ∈ {1, · · · , N},

(3)

where Φ(·) denotes the cumulative distribution function of the
standard normal random variable (Gaussian random variable
with zero mean and unit variance).

From (3), it can be inferred that, when η = 0.5, Φ−1(η) =
0 and (3) is equivalent to MVSA under hard constraints.
When η < 0.5, Φ−1(η) < 0, the terms qiyn may take nega-
tive values meaning that the RMVSA solution approaches the
real simplex. This scenario is illustrated in Fig. 1.

The optimization problem (3) is difficult since the objec-
tive function is nonconvex and the constraints are nonlinear
and, if η < 0.5, nonconvex. In this work, we propose a re-
laxation of the inequality constraint which can be defined as
follows. At the t+ 1 iteration, we have

Q(t+1) = arg min
Q
− log |det(Q)|

s.t. : qT
i yn ≥ Φ−1(η)

√
q
(t)T
i Dwq

(t)
i ,

1T
p Q = a,
∀i ∈ {1, · · · , p},∀n ∈ {1, · · · , N},

(4)

where q
(t)
i is the ith row of Q(t+1). The advantage of (4) is

that the constraints are linear and, thus, we may still apply the
SQP based approach used in the original MVSA [8]. In the
following we will briefly describe the MVSA algorithm [8]
and its modification aimed at solving the optimization (4).

Denote q ≡ vec(Q), i.e., the columnwise stacking of
the columns of Q and define f(q) ≡ − log |det(Q)|. We
adopt the majorization minimization strategy to solve (4),
which amounts to iteratively minimize a majorizer of f ,
denoted as φ(q; q(t)), such that φ(q(t); q(t)) = f(q(t)),
φ(q; q(t)) ≥ f(q(t)), and φ(q,q(t)) is easy to minimize.
Using the fact that the gradient and the Hessian of f are,
respectively, given by g(q) = vec(−Q−T ) and H(q) =
Kn[Q−T ⊗ Q−1], where Kn is the comutation matrix (i.e.,
Knvec(A) = vec(AT )) (see [9] for details), we define the
following local majorizer for f :

φ(q; q(t)) ≡ β(t) + c(t)
T
q +

1

2
qTG(t)q (5)

where c(t) = g(q(t))−H(q(t))q(t) and G(t) = diagH(q(t)).

Define AI = YT ⊗ Ip, AE = Ip ⊗ 1p, b
(t)
I =

vec
(
[Φ−1(η)

√
q
(t)T
i Dwq

(t)
i , i = 1, . . . , p]T ⊗ 1T

N

)
and

bE = a, where ⊗ is the Kroneker product and Ip is the
identity matrix. Therefore, the minimization of (5) subject to
the constrains shown in (4) may be written compactly as

min φ(q; q(t)) = c(t)
T
q +

1

2
qTG(t)q (6)

s.t. : AIq ≥ bI
(t), AEq = bE ,



which is a quadratic programming (QP) problem. Algo-
rithm 1 shows the proposed SQP RMVSA algorithm.

Algorithm 1 RMVSA pseudocode
1: INPUT: AI , AE , bE , q0, where q0 an initial solution
2: COMMENT: f(q) = − log |det(Q)| is the objective

function
3: Convergence← false, Iterations← 0, q = q0

4: repeat
5: Compute c, G, and bI (defined after (5))
6: q← solution of the quadratic optimization (6)
7: if f(q0) < f(q) then
8: do line search until f(q0) > f(q)
9: //Take the middle of q0, q

10: end if
11: if |f(q0)− f(q)| < threshold then
12: Convergence← true
13: end if
14: q0 ← q
15: Iterations← Iterations+ 1
16: until Convergence or Iterations ≥ 4

As discussed in [1], a major issue for a MV algorithm is
that it is not strictly convex or concave, thus a proper initial-
ization is very important. In this work, we use the MVSA
solution as an initialization for RMVSA. MVSA can be ex-
ecuted by the same algorithm by setting bI = 0. Another
important issue for Algorithm 1 is its convergence. Although
we still do not have a proof convergence, we have systemati-
cally observed that a maximum of 4 iterations were sufficient
for RMVSA to converge.

−4 −3 −2 −1 0 1 2
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

v
x
 axis of projection

v
y
 a

x
is

 o
f 

p
ro

je
c
ti
o
n

Endmembers and data points (2D projection)

data points

true

RMVSA η = 0.5

RMVSA η < 0.5

RMVSA η > 0.5

Fig. 1. Plot of the endmember simplex for η < 0.5, η = 0.5
and η > 0.5

3. EXPERIMENTS

In this section we compare the RMVSA algorithm presented
in this work with other state of the art algorithms for end-

member extraction, specifically RMVES [12], MVSA [8],
MVES [10] and N-FINDR [16]. For a given data set, all
algorithms were run just once whereas, owing to its sensi-
tivity to the initialization, RMVES was run 10 times with
Φ−1(η) = −0.3 taking the best result as explicitly sug-
gested by its Authors. To evaluate the performance of the
different algorithms, the estimated abundance fractions (Â)
generated by inverse constrained minimization, and the sig-
nature estimates (M̂) are compared with the true ones (A
and M, respectively). Both A and Â are acquired by
the inverse minimization process using M and M̂ respec-
tively. We use several metrics to evaluate the proposed
approach. The first one is the mean square error (MSE),
denoted as ‖ ε ‖F = ‖ M̂−M ‖F where ‖ · ‖F stands
for the Frobenius norm. Another metric considered in
our experiments is the reconstruction error, computed as
rε = ‖ Ŷ −Y ‖F = ‖ M̂Â−Y ‖F . The third metric used
in this work is the spectral angle distance (SAD) (in degrees)
expressed as SAD = cos−1(

mT
i m̂i

‖mi‖‖m̂i‖ ) [3]. All algorithms
have been implemented in Matlab.

Our experiments have been conducted on a synthetic
image of size 100 × 100 pixels and 200 bands. The spec-
tral signatures are random uniform and selected from the
USGS library [17] and are used to construct the data-sets
under the linear mixture model (1). The data are Dirich-
let distributed and uniformly distributed over the simplex.
Zero-mean white Gaussian noise, defined as SNR = 10 log10

(E[‖Y‖2F ]/E[‖W‖2F ]) (dB), has been added to the synthetic
scene. We distinguish two cases, first when pure pixels exist,
second when non pure pixels exist in the synthetic image.

3.1. Pure pixel based experiments

In the first experiment, we evaluate the proposed RMVSA
algorithm by assuming that pure pixels are present in the con-
sidered data set, simulated with p = 5 endmembers. Tables 1
and 2 show the results obtained by the aforementioned meth-
ods for the considered scene with different noise levels. It can
be observed that both RMVSA and RMVES perform better
than their corresponding hard constrained versions of MVSA
and RMVES, respectively. RMVSA performs slightly better
than RMVES due to the fine tuning of the probability param-
eter. Both RMVES and RMVSA manage to achieve simi-
lar results as N-FINDR which is not the case for MVSA and
MVES which is their major weakness.

3.2. Non pure pixel based experiments

In this subsection, we evaluate RMVSA by assuming that no
pure pixels exist in the considered image (the maximum pu-
rity is 0.8). The same experimental set was constructed as
with the previously experiment. Tables 3 and 4 show the
obtained results from the same methods for the considered



Table 1. Comparison of endmember extraction algorithms on a synthetic image containing pure mineral signatures from the
USGS library under different noise levels.

RMVSA RMVES MVSA MVES N-FINDR
dB ‖ ε ‖F rε SAD |Φ−1(η)| ‖ ε ‖F rε SAD ‖ ε ‖F rε SAD ‖ ε ‖F rε SAD ‖ ε ‖F rε SAD
40 0.004 6.4e-6 0.2 0.05 0.13 4.3e-5 0.6 0.007 6.4e-6 0.4 0.009 6.4e-6 0.5 0.002 7.8e-6 0.6
30 0.01 2e-5 0.5 0.07 0.04 3.7e-5 2.1 0.02 2e-5 1.3 0.13 2e-5 3.5 0.003 2.5e-5 1.9
20 0.02 6.5e-5 1.3 0.08 0.03 6.8e-5 2.2 0.12 6.5e-5 5.1 0.12 6.5e-5 5 0.01 8.3e-5 6.3
10 0.06 2.1e-04 3 0.1 0.07 2.1e-04 3.3 0.99 2.1e-4 18.8 0.94 2.1e-4 18.1 0.04 2.5e-04 18.3

Table 2. Comparison of endmember extraction algorithms on a synthetic image containing random, uniformly distributed, pure
pixels under different noise levels.

RMVSA RMVES MVSA MVES N-FINDR
dB ‖ ε ‖F rε SAD |Φ−1(η)| ‖ ε ‖F rε SAD ‖ ε ‖F rε SAD ‖ ε ‖F rε SAD ‖ ε ‖F rε SAD
40 0.001 8.9e-6 0.1 0.02 0.004 9e-6 0.23 0.004 8.9e-6 0.22 0.006 8.9e-6 0.3 0.001 1.1e-5 0.5
30 0.006 2.8e-5 0.3 0.03 0.018 3.45e-5 0.7 0.02 2.8e-5 0.8 0.13 2.8e-5 3 0.005 3.4e-5 1.6
20 0.02 8.8e-5 1 0.04 0.03 8.8e-5 1.4 0.06 8.8e-5 3 0.07 8.8e-5 3.3 0.02 1.1e-4 5.1
10 0.04 2.7e-4 2 0.04 0.06 2.8e-4 3 0.21 2.7e-4 9.8 0.24 2.8e-4 10.7 0.04 3.3e-4 15.6

scenes with different noise levels. As expected, the algo-
rithms without the pure pixel assumption such as RMVSA,
RMVES, MVSA and MVES outperform the pure pixel-based
N-FINDR algorithm. It can also be observed that RMVSA
performs slightly better than RMVES for all noise levels.

3.3. Computational complexity

In this subsection we present the processing times of RMVSA
(including initialization), RMVES, MVSA, MVES on a syn-
thetic image of 100×100 image with SNR = 30dB for differ-
ent number of end-members. The times (in secs) were mea-
sured in a 4-core desktop PC at 3.0 GHz and 8 GB of RAM.
In Table 5 it can be observed that RMVSA takes twice the
time of MVSA and takes significant less time than RMVES.

Table 5. Processing time (seconds) obtained on a synthetic
image for different number of endmembers.

p RMVSA RMVES MVSA MVES
5 4.1 29.7 2.4 15.3

10 42.9 1788 22.9 546

4. CONCLUSIONS AND FUTURE LINES

In this work, we have introduced a new robust minimum vol-
ume simplex analysis (RMVSA) algorithm for HU. By in-
cluding chance constraints, the proposed RMVSA is able to
deal with scenarios in which noise exist. An important contri-
bution of this work is the relaxation of the chance constraint,
such that the constraints of the optimization problem are lin-
ear. This brings great advantages from both the theoretical

and computational viewpoints. The proposed RMVSA al-
gorithm was evaluated using different simulated hyperspec-
tral data sets, in comparison with other state of the art min-
imum volume based algorithms. The experimental results
showed that the proposed algorithm is very efficient for un-
mixing highly mixed and noisy data. Future work will focus
on evaluating the proposed methodology using real data and
on providing theoretical values for the η parameter based on
the distribution of the data. We will also search for a theo-
retical upper bound for the number of iterations needed for
convergence of the proposed optimization.
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