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ABSTRACT

This paper introduces a generalized minimum noise subspace
method for the fast estimation of the minor or principal sub-
spaces for large dimensional multi-sensor systems. In partic-
ular, the proposed method allows parallel computation of the
desired subspace when K > 1 computational units (DSPs)
are available in a parallel architecture. The overall numerical
cost is approximately reduced by a factor of K2 while pre-
serving the estimation accuracy close to optimality. Different
algorithm implementations are considered and their perfor-
mance is assessed through numerical simulation.

1. INTRODUCTION

Principal subspace analysis (PSA) and minor subspace analy-
sis (MSA) are known techniques in multivariable signal pro-
cessing needed in different application fields including high
resolution parameter estimation [1], data compression [2],
blind source separation [3] or radio frequency interference
(RFI) mitigation [4]. Standard subspace estimation methods
require SVD-like techniques which are computationally ex-
pensive especially for large dimensional systems (e.g large
sensor networks [5], massive MIMO systems [6], large an-
tenna arrays [7], etc). In such a case, the use of distributed
algorithms [8] or parallel computation schemes [4] becomes
of high interest and leads in general to large gains in terms of
computational cost and memory requirements.
In this paper, we generalize the concept of minimum noise
subspace (MNS) to achieve the desired subspace estimation
in a parallel scheme. The MNS method has been initially
introduced in [9] as a tool to reduce the cost of blind channel
estimation of MIMO system using subspace techniques. Later
on, the MNS has been extended to other array processing ap-
plications in [10] and to adaptive tracking of minor subspace
in [11]. The proposed GMNS (Generalized MNS) consists of
the following two contributions (i) we extend the concept of
PCS (properly connected sequence) used in the MNS method
in such a way one can extract the minor subspace with a fixed
number K of DSPs in a parallel architecture or otherwise to
improve the estimation of noise vectors in large dimensional
systems, and (ii) we propose new algorithms for the computa-
tion of the principal subspace using again K properly chosen
subsystems in a parallel scheme.

2. MINIMUM NOISE SUBSPACE: A REVIEW

Let consider a general linear system with p inputs and n out-
puts (p < n) so that the received system can be modeled as

x(t) = As(t) + n(t) (1)

where x(t) is the observation vector, A is the n × p full col-
umn rank system matrix, s(t) is a p-dimensional random vec-
tor and n(t) is the additive white noise vector with unknown
variance σ2. The covariance matrix is then given by

Rxx = E{x(t)x(t)H} = ARssA
H + σ2I (2)

Now, having a parallel architecture with K computational
units at hand, we would like to exploit it to reduce the nu-
merical cost for minor or principal subspace extraction of the
data covariance matrix Rxx. For that, we generalize the prin-
ciple of the MNS method in [9] to our particular case. The
latter method has been proposed for fast computation of the
least eigenvectors using PCS concept briefly reviewed below.

2.1. Concept of PCS

Let m1,m2, · · · ,mn be members of the system output.
Consider a sequence of n − p output subsets containing
each p + 1 members, and denoted by (p + 1)-tuple ti =
(mi1 ,mi2 , · · · ,mip+1

), i = 1, · · · , n − p. This sequence is
said to be properly connected, if the following condition is
satisfied

{mi1 , · · · ,mip} ⊂ {mjk | j < i, 1 ≤ k ≤ p+ 1}
mip+1 6∈ {mjk | j < i, 1 ≤ k ≤ p+ 1}

It means that each tuple in the sequence has p common mem-
bers with its preceding tuples plus another member which is
not shared by its preceding tuples. The PCS concept has been
introduced to guarantee that the noise vectors computed from
these subsystems form a basis of the noise subspace.

2.2. MNS Implementation

The covariance matrix Ri related to ith tuple ti, 1 ≤ i ≤
n− p, is written as

Ri = E{xi(t)xi(t)
H} = AiRssA

H
i + σ2I (3)



where xi(t) = [xi1 , xi2 , · · · , xip+1 ]
T is the partial observa-

tion vector and Ai is its corresponding system response ma-
trix. For each Ri

1, we compute the least eigenvector v̂i and
construct its relevant vector vi as follows

vi(j) =


0 if the jth output of the system

does not belong to the ith tuple
v̂i(j

′) if the jth output of the system
is the j’th entry of ith tuple

where 1 ≤ j ≤ n. It is proved in [9, 10] that, the resulting set
of vectors {vi}1≤i≤n−p forms a basis of the noise subspace.

3. GMNS FOR MSA

In the MNS method, each noise vector is estimated with the
minimum number of system outputs, i.e. p + 1 which might
lead to non-negligible performance loss if n � p. On the
other hand, to achieve the parallel computation of the noise
vectors, we need n − p DSPs in parallel, a number which
depends on the impinging source number p (usually a non-
controllable system parameter).
In this paper, we propose a generalization of the MNS method
that overcomes the previous mentioned shortcomings. Let as-
sume we have K computational units at hand which will be
used in a parallel scheme to compute the n− p noise vectors.
For simplicity, let assume that (n− p)/K = d is integer val-
ued (the general case is discussed below in remark 1). We
generalize the PCS concept in the following way:

Definition 1 The generalized PCS (GPCS) is a sequence of
K (p + d)−tuples ti = (mi1 , · · · ,mip+d

), 1 ≤ i ≤ K,
satisfying:

{mi1 , · · · ,mip} ⊂ {mjk | j < i, 1 ≤ k ≤ p+ d}
{mip+1

, · · · ,mip+d
} 6∈ {mjk | j < i, 1 ≤ k ≤ p+ d}

In other words, each tuple in the sequence has p common
members with its preceding tuples plus d other members
which are not shared by its preceding tuples.

Based on the GPCS, the noise vectors are computed as fol-
lows: For each subsystem, one computes the (p+d)×(p+d)
covariance matrix Ri and its d least eigenvectors represented
by matrix V̂i. Now we construct the desired noise matrix Vi

by zero-padding V̂i according to

Vi(j, :) =


0 if the jth output of the system

does not belong to the ith tuple
V̂i(j

′, :) if the jth output of the system
is the j’th entry of ith tuple

Finally, we obtain the noise matrix V = [V1, · · · ,VK ]
which forms a basis of the noise subspace under the follow-
ing conditions (proof is omitted due to space limitation).

1In practice, Ri is replaced by its sample averaged estimate R̂i =
1
T

∑
xi(t)x

H
i (t), T being the sample size.

Theorem 1 Under the assumption that every p rows of A are
linearly independent, the noise matrix V is full column rank
i.e. rank(V) = n−p and hence its columns span the desired
noise subspace of the data covariance matrix Rxx.

Remarks:
1. In the general case, (n− p)/K is non integer-valued, i.e.

n − p = dK + r, 0 ≤ r < K. In that case, we will use
r-tuples of length (p + d′) with d′ = d + 1 and K − r
tuples of length (p+ d).

2. Note that GPCS is just a practical way to guarantee that
the set of noise vectors forms a basis of the desired sub-
space. In other words, the GPCS does not present neces-
sary conditions to meet but only sufficient conditions.

3. For large dimensional systems where n � p, using only
p+1 system outputs (as in the original MNS) to compute
a noise vector may result in non-negligible performance
loss. Now if d(n− p)/Ke = d is relatively large, we will
use (p+ d) (instead of p+ 1) outputs to estimate a given
noise vector which improves its estimation accuracy.

4. GMNS FOR PSA

The original MNS was dedicated to MSA. Here, we introduce
new methods to deal with the PSA problem using K subsys-
tems in parallel scheme. Next, two algorithms are proposed
for overlapping and non-overlapping subsystem respectively.

4.1. Subsystems without overlapping parts

Let assume that we have a large dimensional system such that
d = n/K > p and, for simplicity, integer-valued. We divide
the n system outputs into K subsystems of length n/K each
represented by

(m(i−1)d+1, · · · ,mid), i = 1, · · · ,K.

Now, for each subsystem, we compute the corresponding co-
variance matrix Ri and its p principal subspace matrix Wi =
AiQi (Qi is an unknown non singular p × p matrix). To
have a global estimate of the signal subspace (a n× p matrix,
W = AQ where Q is any p × p non-singular matrix and
columns of Wspan the range space of A), one needs to get
rid of the unknown matrices Qi. For that, we exploit the fact
that all subsystems receive the same source signals since

Xi = AiS+Ni i = 1, · · · ,K (4)

the p×T matrix S is shared by all the subsystems. Let define

Si = W†
iXi = Q−1i S+W†

iNi (5)

where † denotes pseudo-inverse. In the noiseless case, one
can observe that

Si = TiS1 (6)



where Ti = Q−1i Q1 can be estimated as the LS solution of

min
T
‖ Si −TiS1 ‖22 ⇒ T̂i = SiS

†
1 (7)

Finally, the principal subspace weight matrix is obtained as

W =
[
WT

1 , (W2T2)
T , · · · , (WKTK)T

]T
= AQ1 (8)

In the noisy case, the previous estimate of the principal sub-
space weight matrix is biased due to the ‘biased’ estimate of
matrix Ti. In fact, one can observe that

T̂i = (
SiS

H
1

T
)(
S1S

H
1

T
)−1 (9)

' (Q−1i RssQ
−H
1 )(Q−11 RssQ

−H
1 + σ2I)−1 (10)

where T is sample size. Here we used the fact that the sub-
systems being non-overlapping, their noise terms are uncorre-
lated (spatially white noise assumption) and the fact that Wi

are unitary matrices, i = 1 · · ·K (most subspace estimation
methods compute an orthogonal basis of the desired subspace,
e.g. [12] ). Because of the additive term σ2I, T̂i deviates from
its desired value and leads to an estimation bias for the global
weight matrix, especially, at low SNR values.
To overcome this problem, we replace the previous estimate
of Ti by the following asymptotically unbiased estimate

T̃i = (
SiS

H
1

T
)(
S1S

H
1

T
− σ̂2I)−1 (11)

= (WH
i Ri,1W1)(W

H
1 R1W1 − σ̂2I)−1 (12)

σ̂2 = (Tr(R1)− Tr(WH
1 R1W1))/(d− p) (13)

where Ri,1 = E(xi(t)x1(t)
H . We refer to these algo-

rithms as GMNS-N-PSA (N stands for non-overlapping) and
GMNS-NU-PSA (NU stands for non-overlapping and unbi-
ased), respectively.

4.2. Subsystems with overlapping parts

In the non-overlapping case, we assumed that n/K > p. To
relax this assumption, we consider here the case of overlap-
ping subsystems of size p + q sharing q > p system outputs,
and represented by the K tuples:

(m1, · · · ,mp+q), (mp+1, · · · ,m2p+q), · · · , (mn−p+q+1, · · · ,mn)

In other words, the p last members of the ith subsystem are
the p first member of the i+1-th subsystem. Now, for each
subsystem, we compute the covariance Ri and its correspond-
ing weight matrix Wi which can be written as:

Wi =

[
W′

i

Woverlap
i

]
=

[
A′i

Aoverlap
i

]
Qi (14)

Wi+1 =

[
Woerlap

i+1

W′
i+1

]
=

[
Aoverlap

i

A′i+1

]
Qi+1 (15)

To get rid of matrices Qi, one exploits the overlap between
two successive subsystems by assuming that q × p submatrix
of A is of full column rank. In that case, the global weight
matrix is estimated as:

W =
[
W̃T

1 ,W̃
T
2 , · · · ,W̃T

K

]T
(16)

where W̃1 = W1 and for i = 1, · · · ,K − 1

W̃i+1 = Wi+1Ti (17)

Ti = (Woverlap
i+1 )†(W̃overlap

i ) (18)

This algorithm is referred to as GMNS-O-PSA (where O
stands for overlapping).

5. DISCUSSION

We provide here some important comments on the proposed
algorithms and their comparative performance.
• A main advantage of the proposed methods is their re-

duced computational cost. For the MSA, the numerical
cost is of order O((p+(n− p)/K)2T ) flops for the com-
putation of the subsystems covariance matrices in a par-
allel scheme plus O(p + (n − p)/K)2(n − p)/K) flops
for the estimation of the least (noise) eigenvectors. Com-
paratively, the estimation of the global covariance matrix
costs O(n2T ) flops plus O(n2(n− p)) flops for the noise
vectors extraction. If n� p, the overall cost is almost re-
duced by a factorK2 for the covariance matrix estimation
and a factor of K3 for the noise subspace estimation.
Now, for the PSA, algorithm GMNS-NU-PSA costs
O((n/K)2p + p2(n/K + p)) flops for the computation
of the p signal subspace vectors and O(2(n/K)2T ) flops
for the computation of the covariance and correlation ma-
trices Ri and Ri,1, i = 1, · · · ,K. This overall cost is ap-
proximately K2 less than the cost, equal to O(n2(T +p))
flops, of a direct computation of the signal subspace using
the global covariance matrix. On the other hand, algo-
rithm GMNS-O-PSA costs O((p + q)2p + p2(2p + q))
flops for the computation of the p signal subspace vectors
andO((p+q)2T ) flops for the parallel computation of the
covariance matrices. If n � p, n � K and T � 1, we
have q ≈ n/K, in which case GMNS-O-PSA is slightly
cheaper than GMNS-NU-PSA since it does not require
the computation of the correlation matrices2 Ri,1.

• The proposed methods have some drawbacks including
significant performance loss (as compared to a direct com-
putation using the overall system outputs) when one or
some subsystems are ’ill conditioned’ while the overall
system (i.e. matrix A) is well conditioned (as illustrated

2For certain applications, e.g. radioastronomy, the global covariance ma-
trix is available or computed for other needs, in which case GMNS-NU-PSA
becomes more advantageous than GMNS-O-PSA in term of numerical cost.



Experiment (i.e. Figure) n p K T q
1 14 2 4 200
2 16 2 4 200 4
3 16 2 4 2:5:200 4
4 24 2 4 200 1:1:6

Table 1. Particular parameters are set in our experiments.

in Figure 5). Also, the estimated weight matrix of the
desired subspace is non-orthogonal and its orthogonaliza-
tion, if needed, would require extra numerical cost.

• A key hypothesis for the GMNS method is the spatial
whiteness of the noise vector, i.e. E(n(t)n(t)T ) = σ2I.
This assumption might be too restrictive in certain appli-
cations and can be relaxed ifE(n(t)n(t)T ) = σ2Q where
Q is a priori known or by using instrumental variable
methods. However, an open problem would be to study
the robustness of the proposed methods against slight de-
viations from the considered noise model.

• In [11], adaptive subspace tracking based on the MNS
have been proposed leading to significant performance
gain both in terms of convergence rate and estimation ac-
curacy. Similar adaptive implementations can be consid-
ered for the proposed GMNS methods for both PSA and
MSA problems (this would be the focus of future works).

6. SIMULATIONS

The simulation-based performance comparison of the pro-
posed algorithms are assessed in this section. In all our
experiments, the system matrix A is generated to be normal
random matrix. The sources are independent i.i.d. Gaus-
sian processes of unit power and the noise is spatially white
with different Signal-to-Noise ratios (SNR) specified for each
experiment. We use (19) to evaluate the performance

SEP (i) =
1

R

R∑
i=1

tr{WH
i (I−WexW

H
ex)Wi}

tr{WH
i (WexWH

ex)Wi}
(19)

where SEP stands for subspace estimation performance, R
is the number of simulation runs, and Wex is the exact sub-
space weight matrix computed by orthorgonalizing A. Table
1 lists the particular parameters used for each experiment.

For MSA, we compare the minor subspace estimated by
GMNS-MSA with the one estimated by SVD-MSA algorithm
which uses the Singular Value Decomposition (SVD) to ex-
tract the least eigenvectors (i.e. minor subspace) from the
sample averaged covariance matrix of all observation data.
The noise subspace is computed from the GPCS shown in Ta-
ble 2. As a result of the first experiment, Figure 1 shows a
very slight performance loss of GMNS-MSA.
For PSA, four algorithms including GMNS-N-PSA, GMNS-
NU-PSA, GMNS-O-PSA and SVD-PSA are compared. Here,

Tuples
t1 (m1,m2,m3,m4,m5)
t2 (m1,m2,m6,m7,m8)
t3 (m1,m2,m9,m10,m11)
t4 (m1,m2,m12,m13,m14)

Table 2. GPCS used for first experiment.

Fig. 1. Minor subspace estimation (n = 14, p = 2).

the SVD-PSA uses SVD to extract the principal eigenvec-
tors (i.e. principal subspace) from the sample averaged co-
variance matrix of all observation data. As shown in Fig-
ure 2, GMNS-O-PSA outperforms algorithm GMNS-N-PSA
and GMNS-NU-PSA, and reaches the same performance as
SVD-PSA. Besides, GMNS-NU-PSA has better performance
than GMNS-N-PSA due to the asymptotically unbiased es-
timate of T̃i (i.e. equation (12)). This result confirms our
observation in the previous section.
We also consider the effect of certain parameters on the per-

Fig. 2. Principal subspace estimation (n = 16, p = 2).

formance of the algorithms in the case of PSA. Firstly, we
analyse the effect of the observation time T in a very noisy
environment (i.e. SNR = 0 dB). As indicated in Figure 3,
GMNS-O-PSA has the best estimation accuracy among the



proposal algorithms comparable to SVD-PSA and the estima-
tion error decreases almost linearly (for large T ) with respect
to the observation size. Secondly, we use the SVD-PSA as a

Fig. 3. Performance comparison of four algorithms when the
observation duration T changes.

benchmark to evaluate performance of GMNS-O-PSA when
the number of overlapping parts q varies for SNR = 0 dB. Fig-
ure 4 reveals that we can achieve close to SVD-PSA perfor-
mance only with small increase of subsystems size q. Thus,
the parameter q offers a flexible way to balance between the
accuracy and the complexity.
Figure 5 illustrates the performance loss of the proposed al-

Fig. 4. Performance of GMNS-O-PSA when q changes.

gorithms when one of the K subsystems (here subsystem 1)
is ill conditioned, i.e. cond(A1) ≥ 100 while the condition
number of matrix A is relatively good.

7. CONCLUSION

The concept of MNS has been generalized and used for fast
parallel computation of minor and principal subspaces. The
overall cost is decreased by a large factor (K2 or more) as
compared to direct subspace estimation using all system out-
puts. In the MSA case, the proposed method allows more
flexibility than the original MNS and leads to efficient esti-
mation of the noise subspace. The GMNS is also extended to
PSA case for which two fast algorithms are proposed. Again,

Fig. 5. Performance loss when condition numbers of first sub-
system and overall system are 100 and 18.4 respectively.

efficient signal subspace estimation is observed through the
simulation results close to the SVD-based performance.
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