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ABSTRACT

In this paper, we propose a new adaptive notch filter algorithm
to achieve the fast and accurate narrow-band noise reduction.
In the proposed algorithm, we introduce the monotonically
increasing function into the gradient, which provides the fast
convergence far away from the optical frequency. We addi-
tionally introduce the enhancement function into the gradi-
ent to design the steepness of the gradient curve. The pro-
posed gradient can adjust the trade off between the conver-
gence speed and the estimation accuracy more flexibly. Sev-
eral computational simulations show that the proposed algo-
rithm can simultaneously provide fast convergence and high
accurate estimation compared with the conventional NLMS
algorithm.

Index Terms— Adaptive Notch Filter, Gradient Based
Algorithm, Monotonically Increasing Gradient, Fast and Ac-
curate Estimation

In speech and audio signal processing, biomedical signal
processing, and many other signal processing fields, one of
the most important issues is to remove an undesired narrow-
band noise embedded in a wide-band signal. Examples of
such noise are a background engine noise in voice commu-
nications, an acoustic feedback in hearing aids, a hum noise
in electrocardiograms, and so on. In many practical situa-
tions, the noise frequency is unknown and often changes with
time. In these situations, it is required to detect narrow-band
the noise quickly and estimate the noise frequency fast and
accurately.

An adaptive notch filter is one of the effective methods to
remove the narrow-band noise [1–3]. The adaptive notch fil-
ter is composed by a second-order IIR filter, and its amplitude
response has a steep rejection characteristic at the frequency
of the zero (notch frequency). Thus, if we get the exact noise
frequency, we can completely remove the narrow-band noise
by adjusting the notch frequency to be equal to the noise fre-
quency. For the estimation of the noise frequency, we espe-
cially use a Least Mean-Square (LMS) algorithm which is a
simple gradient based algorithm.

In the gradient method, both the convergence speed and
the estimation accuracy are the important properties which
determine the performance of the algorithm. Note that we

define the estimation accuracy as the ability to decrease the
variance of the estimation error after convergence. Both the
properties depend on the characteristics of the gradient curve.
The high estimation accuracy is performed when the value of
the gradient is small in the vicinity of the noise frequency,
and the fast convergence speed is provided by the large ab-
solute value in other frequency band. In the LMS algorithm,
the absolute value of the gradient becomes large in the vicin-
ity of the noise frequency and small in other frequency band.
Thus, the LMS algorithm significantly degrades the conver-
gence speed and the estimation accuracy, simultaneously.

To solve the problem, several methods have been pre-
sented. A typical one is a Normalized LMS (NLMS) algo-
rithm [4]. Although the NLMS algorithm improves the char-
acteristic of the gradient, the improvement is limited in the
narrow frequency band nearby the noise frequency. There are
other methods combining multiple notch filters which have
different bandwidth parameters or different step-size param-
eters [5–8]. Although these methods provide the fast and ac-
curate estimation, all the adaptations are derived by using the
NLMS algorithm. To achieve the more fast and accurate esti-
mation, it is required to fundamentally improve the character-
istics of the gradient curve.

In this paper, we propose a new gradient based algorithm
for the fast and accurate adaptive notch filter. In the pro-
posed algorithm, the fast estimation is achieved by introduc-
ing a monotonically increasing gradient. Additionally, the
high estimation accuracy is achieved by adjusting the gradient
curve to be gentle in the vicinity of the noise frequency. Sev-
eral computational simulations for removing sinusoidal sig-
nals shows that the proposed method can provide fast conver-
gence and high accurate estimation, simultaneously.

1. REVIEW OF ADAPTIVE NOTCH FILTER AND
CONVENTIONAL NLMS ALGORITHM

For the narrow-band noise reduction, we often use an adap-
tive notch filter, which has a steep rejection characteristic at
the notch frequency. Figure 1 shows the structure of a second-
order adaptive IIR notch filter [1, 3]. The notch filter can be
realized using only three multipliers by sharing the multipli-
ers. Here, the signal x(n) is the input signal, e(n) is the
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Fig. 1. Structure of an adaptive IIR notch filter.

output signal, and u(n) is the signal described by u(n) =
x(n) − au(n − 1) − ru(n − 2). The input signal x(n) is
described by using a narrow-band noise s(n) and an additive
wide-band desired signal w(n), i.e.,

x(n) = w(n) + s(n). (1)

We assume that w(n) is given by a white Gaussian signal with
the mean 0 and the variance σ2, and s(n) is given by a sinu-
soidal signal with the frequency ωs, the amplitude p, and the
phase ϕ.

The transfer function of the adaptive notch filter is given
by

H(z) =
1

2

(
1 +

r + az−1 + z−2

1 + az−1 + rz−2

)
, (2)

where r (−1 < r < 1) is a parameter which controls the re-
jection bandwidth. Specifically, the bandwidth becomes nar-
row along with the increasing value of r toward 1. The pa-
rameter a determines the notch frequency ωN . The relation
between a and ωN is given by

a = −(1 + r) cos(ωN ). (3)

The adaptive notch filter can remove the noise by adjusting
the notch frequency to be equal to the noise frequency.

An NLMS algorithm is one of the simple estimation algo-
rithms in the notch filter [4]. The updating equation is given
by

a(n+ 1) = a(n)− µ
E[e(n)u(n− 1)]

E[u2(n− 1)]
, (4)

where µ is a step size parameter which satisfies 0 < µ < 2.
Both the estimation accuracy and the convergence speed

depend on the gradient E[e(n)u(n− 1)]/E[u2(n− 1)]. Fig-
ure 2 shows the gradient curves of the NLMS algorithm with
ωs = π/2 and r = 0.6, 0.8, 0.95. As seen from this figure,
the absolute value of the gradient becomes large in the vicinity
of ωs for each r. Although the large absolute value of the gra-
dient provides the fast convergence speed, it also causes the
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Fig. 2. Gradient curves for the NLMS algorithm with ωs =
π/2 and r = 0.6, 0.8, 0.95.

low estimation accuracy in the vicinity of ωs. To obtain the
high estimation accuracy, we should set µ to the sufficiently
small value. In this case, however, the convergence speed is
significantly degraded, since the absolute value of the gradi-
ent is small far away from ωs. In the NLMS algorithm, thus,
it is difficult to simultaneously achieve the high estimation
accuracy and the fast convergence speed.

2. PROPOSED ALGORITHM USING
MONOTONICALLY INCREASING GRADIENT

To simultaneously achieve the high estimation accuracy and
the fast convergence speed, it is required to achieve the ideal
gradient curve, that is, we should design the gradient so that
its absolute value becomes small in the vicinity of ωs and
large far away from ωs. In this paper, we introduce a mono-
tonically increasing gradient as one of the gradients which
satisfies such ideal shapes. The monotonically increasing gra-
dient can be achieved by

Φ(a) = sgn
(
E[e(n)u(n− 1)]

) E[e2(n)]

E[u2(n− 1)]
, (5)

where sgn(·) is the sign function. In (5), E[e2(n)]/E[u2(n)]
is a quasi-convex function which has only one minimum at
ωs, and it is multiplied by the sign given by

sgn
(
E[e(n)u(n− 1)]

)
=

 −1, 0 ≤ ω < ωs

0, ω = ωs

1, ωs < ω < π
. (6)

Figure 3 shows the gradient curve Φ(a) with ωs = π/2 and
r = 0.6, 0.8, 0.95. We see from this figure that Φ(a) is a
monotonically increasing function and it satisfies the ideal
shape.

In Fig. 3, every gradient curves for various r are gentle in
the relatively wide frequency range centered on ωs. It causes
the high deterioration of the convergence speed. To improve
the convergence speed, we enhance the value of Φ(a) only



Fig. 3. Gradient curves Φ(a) with ωs = π/2 and r =
0.6, 0.8, 0.95.

Fig. 4. Gradient Curves Φ̄α(a) with ωs = π/2, r = 0.95, and
α = 0.5, 1, 10.

nearby ωs. In this process, we employ the following enhance-
ment function,

ςα(y) =
y

α+ |y|
. (7)

This function can enlarge the value of y around y = 0. The
parameter α (0 < α) determines the degree of the enhance-
ment. Specifically, the degree of the enhancement increases
when α approaches 0. By substituting y = Φ(a) for ςα(y),
we obtain the flexible gradient expressed by,

Φ̄α(a) = sgn
(
E[e(n)u(n− 1)]

) E[e2(n)]

αE[u2(n− 1)] + E[e2(n)]
.

(8)

Figure 4 shows the flexible gradient curve Φ̄α(a) with ωs =
π/2, r = 0.95, and α = 0.5, 1, 10. When the value of α
is large, the curve shape becomes close to the original curve
shape Φ(a). When the value of α is small, the steepness
around ωs in the gradient increases, so that the convergence
speed is improved. Note that the extremely small value of α
causes the excessive steepness in the gradient, i.e., the gra-
dient curve becomes close to the sign function. In this case,
the serious degradation is occurs in the estimation accuracy.
Thus, we should appropriately set α in consideration of speed
and accuracy.

Comb. 1 2 3 4 5 6 7
α 0.05 0.1 0.5 1 10 50 100
µ̄ 0.05 0.1 0.5 1 10 50 100

Table 1. Combinations of α and µ̄ under the same estimation
accuracy.

Based on the gradient method, the proposed updating
equation is obtained by

a(n+ 1) = a(n)− µ̄Φ̄α

(
a(n)

)
. (9)

When the value of the step size parameter µ̄ is sufficiently
small, a(n) converges to as = −(1 + r) cos(ωs) with n →
inf , since the gradient Φ̄α

(
a
)

becomes 0 at a = as.

3. SIMULATION

In this section, we confirm the convergence performance of
the proposed algorithm in (9) through several computational
simulations for the sinusoidal noise reduction. In the fol-
lowing simulations, we use the input signal composed of the
desired white Gaussian signal and the sinusoidal noise with
SNR = 0. We set the noise frequency to π/10, and changed
it to π/2 at the half of the signal length. The default notch
frequency is π/2.

Firstly, we showed the convergence behaviors of notch
frequency ωN with varied combinations of α and µ̄. For the
evaluation of the convergence behaviors, we used the MSE of
ωN calculated by

MSE = 10log10(ωs − ωN )2 [dB]. (10)

The small value of the MSE means that the algorithm pro-
vides the high estimation accuracy. The parameter settings
are shown in the following. We set r = 0.95, and we pre-
pared seven combinations of α and µ̄ such that the MSE val-
ues after convergence are equal for each combination, i.e.,
the each combination has the same estimation accuracy. The
combinations of α and µ̄ are shown in Table 1. As seen from
this table, the values of α and µ̄ are equal for each combina-
tion. For calculating the expectation value in the algorithm,
q̂(n) = E[q(n)], we used

q̂(n) = βq̂(n− 1) + (β − 1)q(n), (11)

where β (0 < β < 1) is the forgetting factor, and all calcula-
tions of the expectation value were done with β = 0.8. The
convergence behaviors with 500 trials are shown in Figure 5.
From this figure, we can see that the every convergence speed
are almost same, except for the very large or very small values
of α, such as α = 100, 0.1, 0.05. To elicit the performance of
the proposed algorithm, we should find the appropriate range
of the values of α from the preliminary simulation.
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Fig. 5. MSE curves for the proposed algorithm with combina-
tions of Table 1.

Secondly, we compared the convergence speed of the pro-
posed algorithm with one of the NLMS algorithm in (4), un-
der the same estimation accuracy. For the evaluation, we use
the MSE and the improvement of the SNR (ISNR). The ISNR
is calculated by

ISNR = 10log10

∑(j+1)L−1
n=jL w(n)2∑(j+1)L−1

n=jL

{
e(n)− w(n)

}2

−10log10

∑(j+1)L−1
n=jL w(n)2∑(j+1)L−1
n=jL s(n)2

[dB],

where L denotes the length of the calculation block. The large
value of the ISNR means that the algorithm can remove the
noise efficiently. In the proposed algorithm, we set r = 0.95,
α = 1, and µ̄ = 0.1. Also, in the conventional algorithm,
we set r = 0.95 and µ = 0.3 to achieve the same conver-
gence speed with the proposed algorithm. Figure 6 shows the
MSE of the notch frequency with 500 trials, where we see
that the value of the MSE in the proposed algorithm is up to
3.7dB lower than the conventional one. Figure 7 shows the
ISNR with L = 10. As can be seen, the value of the ISNR
in the proposed method is up to 8dB higher than the conven-
tional one. These results shows that the proposed algorithm
can, compared with the NLMS algorithm, estimate the noise
frequency with high accuracy and remove the noise more ef-
ficiently.

In the third simulation, we compared the convergence
speed of the proposed algorithm with one of the conventional
algorithm under the same estimation accuracy. The param-
eter setting is same in the second simulation except of the
conventional step size parameter, µ = 0.015. Figure 8 shows
the MSE with 500 trials. From this figure, we can verify that
the convergence speed of the proposed method is up to 5th
as fast as the conventional one. Figure 9 shows the ISNR
with L = 100, where we see that the proposed algorithm
can remove the noise fast compared with the conventional
algorithm.

These simulation results present that the proposed algo-
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Fig. 6. MSE curves for the proposed algorithm and the NLMS
algorithm under the same convergence speed.

Proposed Algorithm 

NLMS Algorithm 

Number of Blocks 

IS
N

R
 [

d
B

] 

Fig. 7. ISNR curves for the proposed algorithm and one of the
NLMS algorithm under the same convergence speed.

rithm can simultaneously achieve the high estimation accu-
racy and the fast convergence.

4. CONCLUSION

In this paper, we had proposed a new gradient based adap-
tive algorithm for the fast and accurate adaptive notch filter.
The proposed method achieved the fast and accurate estima-
tion by introducing an monotonically increasing gradient. To
flexibly design the steepness of the gradient, we additionally
introduced the enhancement function into the gradient. Sev-
eral computational simulations for removing sinusoidal sig-
nals had shown that the proposed method can provide fast
convergence and high accurate estimation, simultaneously.

In future works, we derive the convergence condition of
the step size parameter µ and the enhancement parameter α.
We also investigate the more fast algorithm by using the vari-
able µ and α or introducing the variable r.
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Fig. 8. MSE curves for the proposed algorithm and the NLMS
algorithm under the same estimation accuracy.
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Fig. 9. ISNR curve for the proposed algorithm and the NLMS
algorithm under the same estimation accuracy.
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