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ABSTRACT

We demonstrate the use of a variant of the nonparametric Bayesian
(NPB) forward-backward (FB) method for sampling state sequences
of hidden Markov models (HMMs), when the continuous-valued ob-
servations follow autoregressive (AR) processes. The goal is to get
an accurate representation of the posterior probability of the state-
sequence configuration. The advantage of using NPB samplers to-
wards this end is well-known; one need not specify (or heuristically
estimate) the number of states present in the model. Instead one
uses hierarchical Dirichlet processes (HDPs) as priors for the state-
transition probabilities to account for a potentially infinite number
of states. The FB algorithm is known to increase the mixing rate of
such samplers (compared to direct Gibbs), but can still yield signif-
icant spread in segmentation error. We show that by approximately
integrating out some parameters of the model, one can alleviate this
problem considerably.

Index Terms— hidden Markov model, autoregressive process,
segmentation, hierarchical Dirichlet process, Gibbs sampling, non-
parametric Bayesian

1. INTRODUCTION

In many research problems, automatic segmentation of continuous-
valued time series data is a primary goal [1]. Some well-known
example problems are: (a) detecting the order of nucleotides in a
DNA sequence [2], (b) finding the sequence of speech units (words
or phonemes) from a particular speech signal [3], (c) detecting the
sequence of human motions from measurements of positions, veloci-
ties or other data [4], and (d) finding the effects of major world events
on stock-market returns [5]. A common approach to such problems
is through the theory of hidden Markov models (HMMs) in which
the parameters of the observation probability distribution function
(pdf) are assumed to be dependent only on the value of the hidden
state, and the hidden state sequence is assumed to be a Markov chain
[3]. For instance, in a first-order HMM, the state-evolution is gov-
erned by the pdf P (sj = k|sj−1 = l, ψ) = ψl,k, where sj denotes
the state at time-point j, ψ denotes the transition probability matrix,
and the element in ψ’s l-th row and k-th column, ψl,k denotes the
probability of transitioning from state l to state k. The observations
xj are assumed to be governed by P (xj |sj = k, θ) = L(xj ; θk),
where θ denotes the set of likelihood parameters for state k. Thus,
the observations are conditionally independent of each other given
the state, while each state is conditionally independent of all other
states given knowledge of the previous state’s instantiation.

This simple Markov structure makes it possible to devise learn-
ing and inference algorithms to solve problems of research interest,
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be it the efficient computation of the probability of the observation
sequence x1:d (given knowledge of parameters and state-sequence
s1:d, where d is the total number of observed data-points in the se-
quence) or the estimation of s1:d that “best-explains” the observa-
tions. In the current study, we are primarily interested in the lat-
ter problem. For instance, in the case of speech processing, one
would like to find the sequence of words (= states) that most likely
generated the speech signal (= observation sequence) recorded by
a microphone. When one knows or can accurately estimate (a) the
number of possible states K, (b) the transition probabilities, and (c)
the functional forms and parameters of the observation pdfs for each
state, one can use the Viterbi algorithm to solve this problem [3].
This method is a dynamic programming approach to maximizing
the probability P (s1:d|x1:d, ψ, θ), and has been very successful in
practice. Variations of this approach exist to incorporate more com-
plicated dynamics such as autoregressive (AR) processes. When (b)
and (c) are not known, it is still possible to use the Viterbi algorithm
via a cross-validation/tuning approach [3].

Recently, several efforts have been directed towards solving the
same problem in the case when the total number of states is not
known or may be potentially infinite [6, 7, 5, 8]. For instance, fi-
nancial time series data may be governed by any one of a variety
of statistical regimes, depending on the vagaries of the wider world.
Additionally, one needs to incorporate the fact that new regimes may
arise at any time. Nonparametric Bayesian (NPB) methods offer
an elegant solution to such problems by using hierarchical Dirichlet
process (DP) priors for state transition probability matrices. By con-
struction, these are defined over countably infinite supports, while
the hierarchical structure still allows for a finite probability of transi-
tion between any pair of states. This allows users to devise efficient
Markov chain Monte Carlo (MCMC) sampling schemes to get good
representations of the posterior probabilities of the state-sequences,
the most common approaches being variations of Gibbs sampling
[9] or Metropolis-Hastings methods [10]. These approaches work
as long as the Markov structure of the state-evolution is maintained,
which means that more complex observation models like linear dy-
namical systems (LDS) can be utilized without much overhead [5].

In the specific case of switching vector autoregressive (VAR)
processes with unknown number of states, NPB methods [5, 11]
have been formulated to sample the state-sequences, parameters and
transition probabilities of the HMM. One highly effective segmen-
tation method reported in [5] is a variant of the forward-backward
(FB) algorithm that uses a truncated approximation of the HDP as a
prior for the transition matrix parameters and then samples, at each
iteration, the entire state sequence s1:d from P (s1:d|ψ, θ, x1:d). In
contrast to the simpler direct Gibbs (DG) approach, which samples
each sj from its full conditional P (sj |s\j , x1:d, θ, ψ), this block-
sampling method completely uncouples the state-sequence samples
in iterations t and t − 1 [12]. This leads to faster mixing of the



Markov chain, and gives better representations of the posterior af-
ter the burn-in period. However, the segmentation error between the
state-sequence sample and the true sequence still has considerable
spread. In the present study, we have used a variant of the FB algo-
rithm, where we approximately integrate out some or all of the vari-
ables in the set {ψ, θ}; in other words, we try to Rao-Blackwellize
this sampling strategy. The approximation is necessary because it is
not possible to run an FB procedure in finding the sampling proba-
bility P (s1:d|x1:d) after integrating out the parameters analytically.
Instead, we implement integration after the FB procedure is executed
many times with different parameter values drawn from their poste-
rior pdf.

In the sequel, we describe the problem formulation, priors and
sampling methods in detail in Section 2. We then provide, in Sec-
tion 3, results of applying this method to two simulated time series
that have switching AR dynamics, followed by a discussion of the
advantages and potential pitfalls of this method in Section 4.

2. METHODS

We focus, for now, on switching AR models for scalar continuous-
time observations, and assume that the state-evolution is governed
by a Markov chain, i.e.,

P (sj = k|sj−1 = l) = ψl,k, xj =

ρ∑
p=1

Ak,pxj−p + wj ,

where Ak,p denotes, for state k, the AR coefficients, ρ the known
model order and w the driving noise, which we assume has a Gaus-
sian pdf with zero mean and known variance σ2. Just as in [5], we
assume that the Aks are distributed according to multivariate Gaus-
sian pdfs with hyperparameters µAk ,ΣAk . In order to allow for pos-
sibly infinite number of states, we can use the hierarchical Dirichlet
process (HDP) as a prior for the rows of the transition matrix ψ, i.e.,

G0 =

∞∑
k=1

βkδAk , β|γ ∼ GEM(γ),

Gk =

∞∑
l=1

ψk,lδAl , ψk|α, β, κ ∼ DP

(
α+ κ,

αβ + κδk
α+ κ

)
,

Ak|µA,ΣA ∼ N (µA,ΣA), ∀k ∈ {1, 2, . . .},

where βk denotes the global probability mass associated with the
state k and is distributed as a Griffiths-Engen-McCloskey (GEM)
process with hyperparameter γ (also called a stick-breaking process)
[6]. Thus, G0 represents the prior pmf of the global frequency of
each state. Similarly, Gk represents the prior probability of transi-
tion from state k to all other states, and is itself a Dirichlet process
with concentration parameter α and base distribution β. This hier-
archical construction ensures that each possible state-transition has
a finite probability because the global DP G0 essentially “ties to-
gether” each state-associated DP Gk. Additionally, each self tran-
sition k → k is assumed to have an extra prior probability mass κ,
which is called the stickiness mass and encourages the samplers to
learn models that have persistence (since real-world data usually ex-
hibit slower transition dynamics). The variables α, γ and κ are also
provided their own Gamma priors, and are learned from the data
as in [11]. Henceforth, we will refer to the set of hyperparameters
{β, γ, α, µA,ΣA} as Φ.

2.1. Direct Gibbs (DG) sampling

The goal of Gibbs sampling in the context of time-series segmenta-
tion is to get a representation of the required posterior distribution of

the state-sequence, i.e., to estimate P (s1:d|x1:d,Φ). For each iter-
ation t, a typical sampling scheme would be, (symbols with super-
script (t) denote the value of the corresponding variable at iteration
t):

1. Sample transition and AR parametersψ andA from their con-
ditionals P (ψ(t), A(t)|x1:d, s(t−1)

1:d ,Φ(t−1)).

2. Sample the state sequence s1:d from P (s
(t)
1:d|x1:d, ψ

(t), A(t))
(either in a block or sequential fashion).

3. Sample the hyperparameters Φ from the conditional pdf
P (Φ(t)|x1:d, s(t)1:d, A

(t), ψ(t)).

4. Update the sufficient statistics and obtain updated posteriors
for ψ and A.

In the direct Gibbs sampler, in step 2, we sample each state from its
full conditional distribution, which factors as

P (s
(t)
j = l | s(t)j−1 = k, s

(t−1)
j+1 = m,x1:d, ψ

(t), A(t))

∝ ψ(t)
k,lψ

(t)
l,mL(xj |xj−1:j−ρ, A

(t)
l , σ2).

This approach necessarily couples the samples at adjacent iterations,
which, compounded by the presence of correlated observations from
AR processes, results in very slowly mixing Markov chains. Thus,
an alternative method, which block-samples the entire state sequence
from the pdf P (s

(t)
1:d|x1:d, A), is used here (as in [5]). We call it

the full FB algorithm to distinguish it from our Monte Carlo Rao-
Blackwellized version described later.

2.2. Full FB algorithm

The FB sampler is a modification of the forward-backward method
of [3] that was originally used for inferring the most probable state-
sequences in an HMM. Since the original FB recursions work only
for finite state supports, we have to limit the maximum number of
possible states to K′(> K), where K is the true number of unique
states. The resulting prior is a hierarchical sticky Dirichlet distribu-
tion, and is a finite approximation to the sticky-HDP:

P (β|γ) ∼ Dirichlet(β; γ/K′, . . . , γ/K′),

P (ψk|β) ∼ Dirichlet(ψk;αβ1, . . . , αβk + κ, . . . , αβK′).

Given ψ(t), A(t), the FB method for sampling s1:d proceeds as fol-
lows:

1. We initialize an array of messages mj,j−1(k) to 1.

2. We compute, ∀j ∈ d, d− 1, . . . , 1 and ∀k ∈ 1, . . . ,K′,

mj,j−1(k) :=

K′∑
l=1

ψ
(t)
k,lmj+1,j(l)N (xj ;A

(t)
k xj−1:j−ρ, σ

2).

3. We now initialize state-transition counts zk,l = 0, ∀k, l ∈
{1, . . . ,K′}. For each k, we compute the probability
Lk(xj) = N (xj ;A

(t)
k xj−1:j−ρ, σ

2)mj+1,j(k).

4. We then sample a state assignment

s
(t)
j ∼

K′∑
k=1

ψ
(t)
sj−1,k

Lk(xj)δ(sj , k),

and increment transition counts zk,l accordingly.

The state transition counts are used as sufficient statistics (in addi-
tion to the observation sufficient statistics) to update the posteriors of
ψ,A,Φ. Details of these computations have been provided in [11].



2.3. FB with Monte-Carlo-based Rao-Blackwellization (RBFB)

The Rao-Blackwell theorem [13, 14] suggests that, if one were to
integrate out the “nuisance” parameters ψ,A from the joint distribu-
tion, one would obtain samplers that would give more accurate rep-
resentations of the posterior. Analytically marginalizing out some
variables from a joint pdf always reduces the spread of any estimate
dependent on it. Thus, we would ideally want to run a sampler that
uses the conditional P (s1:d|x1:d) instead of P (s1:d|x1:d, ψ,A).

Note, however, that in any HMM with Dirichlet priors, analyti-
cally marginalizing outψ,A from the joint pdf leaves us with a Pólya
urn process [15], in which the probability of any transition k → l de-
pends on the number of times this transition has already occurred. In
effect, not sampling (collapsing out) ψ,A makes every pair of states
(si, sj) dependent, and we lose the Markov independence structure
that enables FB to work when the parameters are instantiated.

In order to overcome this problem, we use a simple Monte-Carlo
integration procedure to “approximately” Rao-Blackwellize the FB
method. Prior to step 1 (in the full FB procedure of Section 2.2),
instead of sampling only once from the conditional probability dis-
tribution of the parameters, we sample M times. For each of the
M parameter samples, we perform steps 1 to 3 of the FB process
separately and store, for each k,m, the obtained L(m)

k (xj) terms.
Finally, in step 4, we sample each state from

s
(t)
j ∼

K′∑
k=1

ψ
(t)
sj−1,k

L′k(xj)δ(sj , k)

=
1

M

K′∑
k=1

M∑
m=1

ψ
(t,m)
sj−1,k

L
(m)
k (xj)δ(sj , k).

In this way, we can preserve the advantages offered by the FB ap-
proach (faster mixing) while disposing of the layer of stochastic vari-
ability introduced by sampling the model parameters.

3. RESULTS
In order to test the RBFB method, we constructed two simulated
time series from switching AR processes of order 1 (Dataset 1) and
2 (Dataset 2) respectively. For each dataset, the true number of states
was K = 3. Exactly one time series, with d = 1000, was generated
from each model.

In Dataset 1, we fixed the noise variance σ2 at 0.04 and the
true AR parameters to A1 = −0.9, A2 = 0.2, A3 = 0.9. The di-
agonal elements of the true transition probability matrix had much
higher values than the non-diagonal ones in order to simulate persis-
tent state dynamics. This matrix was fixed at

ψ =

0.9900 0.0051 0.0049
0.0060 0.9896 0.0044
0.0056 0.0128 0.9817

 .

In Dataset 2, we kept σ2 = 1, and the true AR parameters
for the three states were A1 = [0.49, 0.49], A2 = [1,−0.5], and
A3 = [−1,−0.5]. The transition probability matrix was fixed at

ψ =

0.9770 0.0037 0.0193
0.0085 0.9889 0.0026
0.0029 0.0564 0.9408

 .

Each time series x was then used as input to the three different
Gibbs samplers. Each sampler was run for T = 3000 iterations, with
each iteration containing 100 hyperparameter sampling steps. When
using the RBFB method, we sampled the {ψ,A} parameters a total

0 0.1 0.2 0.3 0.4 0.5
0

5

10

15

20

25

30

Segmentation error

E
m
p
i
r
i
c
a
l
 
p
d
f

 

 

DG
Full FB
RBFB

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12

14

16

18

Segmentation error
E
m
p
i
r
i
c
a
l
 
p
d
f

 

 

DG
Full FB
RBFB

Fig. 1: Empirical pdfs of the segmentation error between sampled
and true state-sequences, when using various sampling strategies on
the (top) 1st and (bottom) 2-nd order AR data. SE was calculated as
explained in the text.

of M = 10 times at the start of every iteration. The α + κ and γ
hyperparameters were both given the same Gamma priors, with the
A and B parameters for both priors fixed at 1 and 0.01, respectively.
Additionally, the hyperparameter κ/(α+ κ) was used to sample the
stickiness parameter, and was given a Beta prior with C and D pa-
rameter values of 10 and 1, respectively. Details on updates of the
hyperparameters can be found in [11]. For ease of visualization, the
maximum number of possible states K′ was limited to 5. The state-
sequence initialization was s(0)j = 1, ∀j = 1, . . . , d(= 1000). For
the A parameter, a Gaussian prior was used with mean and standard
deviation parameters 0 and I, respectively. When sampling A, trun-
cation was enforced in order to ensure that only stable AR processes
were sampled [16, 17]. For analysis, after obtaining all the samples,
we rejected the first 1000 as burn-in samples.

We calculated the segmentation error (SE) for each iteration’s
sampled state sequence in the following way. Since each state is
characterized by the corresponding AR parameters, we mapped
any given sequence of state-indices si:j to a sequence of corre-
sponding AR coefficient (or AR coefficient-mean) vectors. For
the 1st order AR process, SE for some iteration t is the mean
squared error between sequences of AR means obtained from
st1:d and from the true sequence s1:d. For the 2nd-order case, we
mapped each state’s AR parameter vector to a set of characteristic-
equation roots on the z-plane and calculated the corresponding
complex angle. Thus we obtained a sequence of z-plane com-
plex angles for each state-sequence. For instance, a section of the
true state-sequence s80:82 = [1, 3, 2] was mapped to the A se-
quence [[0.49, 0.49], [−1,−0.5], [1,−0.5]], then to the z-plane as
[[0.987,−0.497], [−0.5 ± 0.5i], [0.5 ± 0.5i]], which yielded a se-
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Fig. 2: Empirical pdfs of posterior updates at the end of each iteration for mean of AR parameters for each of the K′ = 5 possible states
(k = 1, 2, 3, 4, 5) considered in (left) the DG, (center) the full FB and (right) RBFB sampling strategies. Data used were from dataset 1. Solid
black lines indicate the true AR coefficient values.
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Fig. 3: Posterior updates at the end of each iteration for mean of AR parameters for each of the K′ = 5 possible states (k = 1, 2, 3, 4, 5)
considered in (left) the DG, (center) the full FB and (right) RBFB sampling strategies. Data used were from a 2nd-order AR process. Black
circles represent the true AR coefficients for the three states. Note that, in the case of RBFB, the cyan and blue markers are isolated in very
small regions close to the true parameter values (1,0.5) and (-1,-0.5), respectively.

quence of complex angles (in radians) [0, 2.356, 0.785]. Similarly,
we obtained sequences of z-plane angles for each iteration’s sampled
state-sequence s(t)1:d and calculated the mean squared error between
this and the true z-plane argument sequence. Figure 1 shows com-
parisons of the empirical pdfs constructed from the histograms of the
SEs obtained from the DG, full FB and RBFB strategies’ respective
samples after burn-in. Using the full FB method yields lower SE on
average compared to DG, and the RBFB further improves on this.

Figure 2 shows empirical pdfs constructed from histograms of
parameter mean updates at the end of each sampling iteration (i.e.,
after step 4 in Section 2.1) for each state considered in the DG, full
FB and RBFB strategies when applied to Dataset 1. Similarly, for
Dataset 2, we plot in Fig. 3 the parameter means obtained at the end
of each iteration from the three samplers. Note that in the right panel
of Fig. 2, which shows results for the RBFB method, the means for
state 3 (in red) are concentrated around 0. This is because for almost
all iterations, this state was not instantiated when sampling for s1:d,
and the sampler generates A values from the prior. The same is true
for state 2 (cyan) for a smaller number of iterations. In both figures,
the parameter means are scattered around the true AR coefficients,
and the RBFB sampler yields the least spread of all the samplers,
while accurately identifying the three existing AR models in most
iterations.

4. DISCUSSION

NPB sampling methods have been steadily gaining in popularity to
solve inference problems, aided by improved understanding of the
theory and the potency of present day computers for their imple-
mentation [18, 19]. Interesting applications include text classifica-
tion [6], image processing [4], adult heart rate data analysis [20, 21],
and many more. In these methods, the number of classes need not
be predefined. During sampling, when new data are processed, they

can either join one of the existing classes or can be grouped in a
new class. This allows the number of classes to grow as new data
are acquired, while priors such as Dirichlet processes enforce model
compactness implicitly.

Considerable attention has also been devoted to NPB segmen-
tation of switching autoregressive processes, notably by [5, 6, 8].
In [5], the authors have shown the use of a Baum-Welch type FB
recursion to block-sample the state sequence of the HMM (s1:d)
from P (s

(t)
1:d|x1:d, ψ

(t), A(t)) in order to increase the mixing rates
in the direct Gibbs (DG) approach. In this study, we improved
upon these results by Rao-Blackwellizing the FB algorithm using a
Monte-Carlo approach. By sampling ψ,A, multiple times from their
respective posteriors and averaging the resultant posterior probabil-
ity of the state-sequence, we are able to encourage the sampler to
explore the posterior landscape more efficiently. Our simulations
with two different models of AR order 1 and 2, suggest that the
RBFB sampler can decrease the mean and spread of the segmenta-
tion errors over many iterations (Fig. 1). In Fig. 2, one can see that
when using the DG method on 1-st order AR data, each considered
state wandered through a wide region in the A space. Also, while
the A = −0.9 state was identified in most iterations by all samplers,
none of the considered states in the DG method could uniquely pick
out the A = 0.9 or A = 0.2 states. When using the full FB method,
it is clear that the true states 1 and 3 are picked out by more than
one of the considered states, while the A = 0.2 state is ignored.
Finally, the RBFB sampler yields much narrower empirical pdfs for
each considered state, and is the only one that is able to pick out
the A = 0.2 state consistently. Moreover, for most iterations, each
state considered by the RBFB samples from unique regions in the
A space, leading to less uncertainty in state-identification. Similar
results can be seen for Dataset 2 in Fig. 3. In particular, for the
RBFB method, we note that the narrow region in the A1, A2 space



occupied by states 1 and 4 is very close to the true A vectors (1,-0.5)
and (-1,-0.5) (black circles).

One limitation of the RBFB method is the significant overhead
in terms of computational complexity; the present method performs
the entire sampling chain M times for each sampled value of the pa-
rameter set, which increases the time taken for sampling M times.
However, vectorizing the code (programs were implemented in Mat-
lab) for the parameter sampling step enabled us to make the RBFB
method more efficient. We performed some small simulations to
test the computational savings from vectorization. Using observed
time-series from Dataset 1, we found that on average, the vector-
ized RBFB method completed the entire sampling chain in about 1.5
s per iteration, whereas the code without vectorization took about
2.5 s per iteration on average. As expected, the direct Gibbs and
FB methods outperformed the RBFB method in computation time.
However, we note that further studies need to be done to analyze
the computational complexity of the samplers, and to decrease it
if possible. In addition, we are in the process of testing the effect
of Rao-Blackwellization on the segmentation error with different
model complexities (higher order AR or more general linear dynam-
ical systems), higher noise variance and for varying numbers of M .
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