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ABSTRACT

This paper is a study of the problem of speech-music discrim-

ination from a deep learning perspective. We experiment with

two feature extraction schemes and investigate how network

depth and RBM size affect the classification performance on

publicly available datasets and on large amounts of audio data

from video-sharing sites, without placing restrictions on the

recording conditions. The main building block of our deep

networks is the Restricted Boltzmann Machine (RBM) with

binary, stochastic units. The stack of RBMs is pre-trained in a

layer-wise mode and, subsequently, a fine-tuning stage trains

the deep network as a whole with back-propagation. The pro-

posed approach indicates that deep architectures can serve as

strong classifiers for the broad binary problem of speech vs

music, with satisfactory generalization performance.

Index Terms— Deep learning, Speech-Music Discrimi-

nation

1. INTRODUCTION

The ever increasing availability of audio data over various dis-

tribution channels, including video sharing sites and social

networks, has highlighted the need for audio content classifi-

cation algorithms that are capable to deal with diverse audio

types. Although a multiclass solution for the general audio

classification scenario is the ultimate goal, in practice several

subtasks have been studied in the literature over the years.

Such is the case with the binary problem of speech-music

discrimination, with early work dating back to the late 90s.

In its first definition [1], the problem referred to the classi-

fication of pre-segmented homogeneous audio segments to

the speech or music class. Later work also dealt with the

task of automatically segmenting uninterrupted audio streams

and tagging the resulting segments with a speech or music la-

bel [2], [3], [4]. It is worth noting that the initial problem def-

inition is still useful in the case of continuous audio streams,

because it is always possible to break the audio signal into

non-overlapping fixed length mid-term segments and classify

each one of the resulting segments separately.

Recent advances in the field of deep networks have

demonstrated remarkable classification performance in var-

ious disciplines, including the modeling of acoustic sig-

nals [5]. Therefore, in this paper, we are making an attempt

to study the problem of speech-music discrimination in its

original formulation, from a deep learning perspective, with-

out making any assumptions with respect to the origin of the

signals. This is a significantly harder task compared with

subtasks that have been studied in the past, e.g., the sub-

task of speech / music detection in audio streams from radio

broadcasts [3], [4].

To this end, we experiment with two different feature ex-

traction schemes which are based on the spectrogram of the

signal and on a variant of the Mel-Frequency Cepstrum Co-

efficients (MFCCs). We focus on using the standard RBM

with binary, stochastic units as the main building block of

our deep networks instead of resorting to more complicated

RBMs that are harder to train with the Contrastive Diver-

gence algorithm. For example, the method in [4] uses a mean-

covariance RBM in the context of a shallow network for the

more constrained problem of spech / music detection in radio

broadcasts, but it only outperforms slightly simpler classifiers

when tested on unseen data. In the current paper, the stack of

RBMs is first pre-trained in a layer-wise mode and in the end

a fine-tuning operation is performed via a supervised back-

propagation scheme. We investigate how the depth of the

network and RBM size affect the classification performance

on publicly available datasets and on large amounts of au-

dio data from video-sharing sites. Classification performance

measurements are mainly provided at the frame level, but we

also draw conclusions at the audio track level. The latter deals

with the problem of classifying a whole recording as either

music or speech, even though there can be certain misclas-

sifications at the short-term frame level. The novelty of our

approach lies in the fact that we are revisiting an old problem

from a new perspective, placing emphasis on the generaliza-

tion capabilities of the method. Our study concludes that deep

architectures can serve as strong classifiers, with promising

generalization performance, for the broad binary problem of

speech vs music.

The paper is organized as follows: the next section

presents the feature extraction stage, Section 3 describes

the adopted deep architecture, Section 4 presents the experi-

mental setup, and conclusions are drawn in Section 5.



2. FEATURE EXTRACTION

A short-term processing technique is first applied on each au-

dio recording. The signal is thus divided into non overlapping

frames and from each frame a feature vector is extracted. We

investigate two feature extraction schemes, namely the spec-

trogram of the signal and a variant of the Mel-Frequency Cep-

strum Coefficients (MFCCs) [6].

For the first feature, we compute the short-time Fourier

transform every 30 ms and keep the frequencies up to 3 kHz,
approximately. This frequency range carries sufficient dis-

criminatory information for the problem at hand. For the

second feature, we compute a vector of 13 MFCCs, using a

filter-bank of triangular non overlapping filters, whose cen-

ter frequencies have been tuned to coincide with the semi-

tones of the chromatic scale [7]. Let X = {x1, x2, . . . , xN}
be the sequence of extracted feature vectors, irrespective of

the adopted feature, where N is the length of the feature se-

quence. Each xi is then augmented with its delta and delta-

delta coefficients, a common context modeling technique in

speech processing. To preserve the simplicity of presentation,

we keep the notation xi, i = 1, . . . , N , for the sequence of

augmented feature vectors.

At a next step, we form “slices” of feature vectors, i.e.,

we use xi−1, xi and xi+1 to compile the column vector yi =
[xT

i−1 xT
i xT

i+1]
T , i = 2, . . . , N − 1, where T denotes matrix

transposition. Recent deep learning studies for acoustic mod-

eling [5] have shown that feature slicing yields good feature

candidates in the context of phoneme modeling. In the se-

quel, we will refer to the yis with the term patterns. In other

words, a pattern is a column version of a slice of adjacent

feature vectors. As an example, if a vector of 13 MFCCs is

augmented with its delta and delta-delta coefficients, it be-

comes 3× 13 = 39-dimensional and each slice yields in turn
a 3× 39 = 117-dimensional pattern.

Finally, each feature dimension is soft-max normalized in

the interval [0, 1] as follows: x̂i(k) =
1

1+exp(−z(k)) , where k

is the index of dimensions, z(k) = xi(k)−µ(k)
σ(k) , and µ(k) and

σ(k) are the mean value and standard deviation over the k-th
feature dimension. In our study, the softmax normalization

step is important because it assigns a probabilistic interpre-

tation to each feature dimension, thus making it possible to

feed the normalized pattern to the first RBM of the architec-

ture which consists of binary, stochastic nodes.

After the normalization step has been completed, all pat-

terns from the same audio file are given the same class label.

The resulting dataset is therefore a set of pattern-label pairs,

(x̂i, ci), i = 1, . . . , L where L is the total number of patterns

and the ci s are binary labels (music vs speech). We have

used a binary vector representation for the class labels, i.e.,

[1 0] and [0 1] are the music and speech labels, respectively.
This representation is dictated by the nature of the associative

memory, which lies on top of the stack of RBMs and maps

the output of the last RBM to the desired class labels. In the

rest of the paper, we drop the hat notation from the patterns,

so the i-th pattern is simply written as xi.

3. DEEP ARCHITECTURE

The proposed architecture is a stack of Restricted Boltzmann

Machines (RBMs). Each RBM is a two-layer network with

binary, stochastic units. These two layers are commonly re-

ferred to as the “visible” and “hidden” layers. Each unit,

vi, i = 1, . . . ,M , of the visible layer is connected with all

hidden units with undirected weights and, similarly, each hid-

den unit, hj , j = 1, . . . , N , is connected with all visible units.

The units of the same layer are not connected with each other

and this is a major difference compared with the more general

Boltzmann machine.

Let v and h denote the visible and hidden nodes, respec-

tively, and W the connection weights, i.e., wij is the weight

connecting vi with hj . The energy, (v,h), of the joint config-
uration (v,h) is then defined as

E(v,h) = −

M∑

i=1

αivi −

N∑

j=1

βjhj −

M∑

i=1

N∑

j=1

vihjwij

and the respective probability, p(v,h), of the configuration is

p(v,h) =
1

Z
e−E(v,h) (1)

where Z is known as the partition function: Z =
∑−E(v,h)
v,h .

During the training stage, the training patterns are “clam-

ped” on the visible nodes and the goal of the training al-

gorithm is to seek the weights that maximize, from a max-

imum likelihood perspective, the sum of the logarithms of

the probabilities of the training patterns, i.e., the function∑L

i=1 log p(v), where p(v) = 1
Z

∑
h e

−E(v,h) and L is the

number of patterns. In this study, we are using an approxi-

mation of the log-likelihood gradient, known as Contrastive

Divergence (CD) [8], which has become very popular in

practice. A detailed treatment of CD can be found in [9].

Basically, the CD procedure uses the following equation to

update the RBM weights:

∆wij = ǫ(〈vihj〉data − 〈vihj〉recon)

where angular brackets denote expectations over the training

data and their reconstruction, respectively, and ǫ is the learn-

ing rate. To estimate the quantities inside the angular brack-

ets, alternate Gibbs sampling is used [8], [9]. Due to the ab-

sence of direct connections among nodes of the same layer,

the conditional probabilities, p(hj = 1 | v) and p(vi = 1 | h)
are logistic sigmoid functions that can be easily sampled dur-

ing the Gibbs sampling procedure.

As a performance measure during the training stage of

each RBM, we adopt the Signal-to-Reconstruction Error-

Ratio (SRER), measured in dBs. Given a training set of L



patterns (M -dimensional), we define the SRER as:

SRER = 10 log10

∑L

n=1

∑M

k=1 x
2
n(k)∑L

n=1

∑M

k=1[xn(k)− x̂n(k)]2
(2)

where xn and x̂n are the i-th pattern and its reconstruction,

respectively. If the change of the SRER value is negligible be-

tween successive iterations, training is terminated. We have

adopted a layer-wise pre-training scheme. It means that the

RBMs are trained in succession. Specifically, after the first

RBM has been trained, we feed each training pattern to its vis-

ible nodes and obtain the conditional probabilities of the hid-

den nodes, p(hj = 1 | v), j = 1, . . . , N . Therefore, eachM -

dimensional visible pattern generates a N -dimensional prob-

abilistic pattern that becomes the visible pattern of the next

RBM in the stack. Instead of probabilities, we could have

used binary codewords, i.e., force unit binarization after the

conditional probability computation. However, we have ob-

served that the propagation of binary codewords degrades the

classification performance which is in accordance with sim-

ilar observations in other application fields of deep learning

[8]. Practical issues related to the implementation of the CD

algorithm are presented in Section 4.

Further to the stack of RBMs, a top layer of weights

is used to connect the output of the last RBM with a layer

consisting of two softmax units. We refer to this weighting

scheme by the term “associative memory”, because it asso-

ciates the output of the stack of RBMs with the class labels.

The output of a softmax unit is a weighted sum of its input

(i.e., of the output of the last RBM), divided by the sum of

outputs of all softmax units (two units for the binary problem

at hand). The result can be interpreted as an estimate of the

posterior probability of the respective class given the input

pattern. The associative memory is pre-trained for a few it-

erations, during which the binary representations of the class

labels are clamped on the softmax units.

After the associative memory has been trained, a back

propagation algorithm that minimizes the cross-entropy error

function is used to fine-tune the network as a whole [8].

During the classification stage, each pattern is clamped on

the visible nodes of the first RBM and the activation of hidden

nodes propagates through the network until it reaches the as-

sociative memory, the output of which determines the softmax

node which has produced the highest posterior probability.

4. EXPERIMENTS

The proposed method was applied on two publicly available

datasets and on several hours of YouTube c© audio data, with-

out restricting the origin of the recordings.

- The first dataset (D1) originally appeared in [1] and was

subsequently refined in [10]. This corpus is a relatively small

collection of 240 randomly chosen extracts from radio record-

ings. Each resulting file is 15 s long and stored in WAVE for-

mat (sampling frequency 22050Hz, single channel, 16 bits per

sample). The dataset is partitioned by its creators into a train-

ing subset and a test subset. However, as we are using a re-

peated cross-fold validation scheme in our study, we have ig-

nored the initial data partitioning scheme. D1 consists of four

classes, namely, pure music (101 files), pure speech (80 files
with male, female and conversational speech), mixed tracks

(60 files with speech over music), and a very small class with
other types of sounds (4 files). Some of the music extracts are
instrumental. The third and fourth classes were not taken into

account in this study.

- The second dataset (D2) is available via the Marsyas

website [11]. It consists of a total of 120 tracks, evenly dis-
tributed among the classes of music and speech. Each track

is 30 seconds long and stored in WAVE format (sampling fre-

quency 22050Hz, single channel, 16 bits per sample). Some

of the music extracts are instrumental. The music class cov-

ers a wide variety of music genres. The speech class contains

both male and female speakers and in some cases dialogue.

There are not any mixed tracks in this corpus (cases of speech

over music).

- The third dataset (DINT ) was only used for testing

purposes and consists of several hours of pure music and

pure speech data stemming from various YouTube c© audio

streams. This corpus was compiled to enable testing on a

large scale, on totally unseen data and on a variety of record-

ing conditions. In this way, we can measure the generalization

capabilities of our algorithm. The music class encompasses

a wide variety of music genres, namely a 5-hour atmospheric
video game music compilation, music collections from the

50’s, 80’s and 90’s (2 hours) and a Celtic Music Collection

(3 hours). The speech class consists of audiobooks (3 hours,
narration by a single male or female speaker), discussions

evolving around matters of law (2.5 hours) and briefings of

officials to journalists (2 hours). For data engineering pur-

poses and better content understanding, each uninterrupted

recording was broken into a sequence of segments, where

each segment was 30 s long.

4.1. Feature Extraction Details

For the computation of the spectrogram, we have used a short-

frame length equal to 30 ms with zero overlap between suc-

cessive frames. Given that the sampling frequency, Fs, is

22050Hz in all our experiments, this frame length amounts to
662 samples, which are zero padded with 362 zeros to yield
1024 DFT coefficients, of which 128 are kept to cover the fre-
quency range up to 2750Hz. After the magnitude of each DFT
coefficient is computed, the vector of DFT coefficients is aug-

mented with the delta and delta-delta coefficients, yielding a

384-dimensional feature vector. As a result, the resulting pat-
tern (slice)is 384× 3 = 1152-dimensional.

For the computation of the MFCCs, we use non overlap-

ping frames, 50 ms long. In this case, the longer window

permits a finer frequency resolution, which is necessary be-



cause the lower semitones of the chromatic scale are closely

spaced, starting from the center frequency at 110Hz. Each

frame yields 13 MFCCs, which eventually produce 117-
dimensional patterns.

After the softmax normalization step has been completed,

the dataset under study is used in a cross-fold validation

scheme. At each fold, 70% of the audio files are randomly

chosen for training and the rest for testing. Table 1 presents a

description of D1, D2 and DINT for each feature extraction

scheme with respect to the number of patterns.

Feature D1-Tr D2-Tr D1-Te D2-Te DINT -Te

DFT 59400 83580 25460 35820 2.05 M

MFCC 35400 49980 15170 21420 1.23 M

Table 1. Description of datasets. Tr and Te stand for training

and testing respectively. Numbers refer to patterns.

4.2. Network Training

The patterns of the training set are randomly shuffled and are

grouped to form minibatches. Each minibatch consists of 100
patterns. During the RBM training stage, the weights of the

RBM are updated after each minibatch has been processed

and a training epoch is completed after all the minibatches

have been processed. We experimented with several different

network depths, with at least 3 RBMs, and with different

RBM sizes (number of hidden nodes per RBM). During

the layer-wise training scheme [8], [12], the value of SRER

at the end of the i-th epoch (SRERi) is examined and if

| SRERi − SRERi−1 |< e, RBM training terminates,

where e = 0.01 dB in our study. If, on the other hand, the

computed SRER is not negligible, training continuous for

at most 100 epochs. Figure 1 presents the learning curves

of the RBMs of a 500x500x2000 architecture, for the case

of DFT-based features. In this figure the SRER is plotted

versus the epoch index. Similarly, the associative memory
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Fig. 1. Learning curves for the RBMs of a 5x200 network

configuration which used DFT-based features.

is trained for a small number of epochs (5 − 10 epochs are

enough). Finally, the whole network is trained as a whole

for 50 epochs with a back-propagation algorithm which min-

imizes the cross-entropy error function. The weights from

the pre-training stage serve to initialize the back propagation

algorithm.

In all our training experiments, the cross-fold training er-

ror was measured at the pattern level and was less than 1.5%
on D1 and approximately 2% on D2. Figure 2 presents the

cross-fold classification error on D1 and D2 for selected net-

work architectures. We use abbreviated notation to denote

network depth and RBM size. For example, 100× 100× 400
means that we are dealing with a 3-layer network, where the
first and second RBMs have 100 hidden nodes and the last

RBM has 400 nodes. It follows that the size of the associative
memory in this case is 400× 2 nodes, where 2 is the number
of classes.

We present performance measurements using a confi-

dence threshold, Th. The goal of the threshold is to reject any

classification decision if the estimated posterior probability

of the winning class fails to exceed Th. As complementary

information, we also provide the percentage of patterns that

have been left unclassified.
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Fig. 2. (a) Cross-fold validation error on D1 and (b) on D2.

(c) Unclassified patterns on D1 and (d) on D2.

Figure 3 presents classification results on dataset DINT ,

for selected network configurations trained on D1. Due to

space limitations, we have omitted the respective plot forD2.

However, it has to be noted that the performance based onD2

follows closely Figure 3. Based on figures 2 and 3, we can

draw the following conclusions:

(i) At the pattern level, the best performance on DINT

(8% error) was achieved by a 500x500x2000 network with



DFT-based features, when the confidence threshold was 0.5.
If a strict threshold is applied, the lowest error is 3.5 and

stems from a 500x500x2000 network operating on MFCCs.

However, the percentage of unclassified patterns in this case

is almost 40%. So, a more realistic network choice would

be again the 500x500x2000 network with DFT-based features

(10% of unclassified patterns).

(ii) The use of a confidence threshold decreases signif-

icantly the pattern classification error, especially in DINT .

However, as the threshold increases, the percentage of unclas-

sified patterns increases more rapidly for certain architectures,

as it is for example the case with the 500x500x2000 MFCC-

based network. The DFT-based approaches appear to be less

sensitive to the increasing threshold.

To compliment the results in the figures, we report that, at

the audio file level (30 s level), the cross-fold error is zero on
D1 and almost zero on D2, for a 500x500x2000 DFT-based

network. More specifically, if the label which corresponds to

the majority of decisions at each 30 s segment is selected as
the label of the segment, we always get correct results in D1

and at most 1 misclassified segment in D2. These numbers

are not affected by the value of the confidence threshold. In

this line of thinking, the error rate at the 30 s level on DINT

is equal to 0.63%, i.e, only 13 (music) files were misclassified
(out of 2066 in total).
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Fig. 3. (a) Error on DINT (b) Unclassified patterns.

5. CONCLUSIONS

In this paper, the problem of speech-music discrimination was

studied from a deep learning perspective. We experimented

with different feature extraction schemes and investigated

how the network depth and RBM size affect the classifica-

tion performance on publicly available datasets and on large

amounts of audio data from video-sharing sites. It can be

concluded that deep architectures provide the basis for build-

ing strong classifiers for the broad binary problem of speech

vs music, with satisfactory generalization performance.
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