
EVALUATION OF NON-LINEAR COMBINATIONS OF RESCALED REASSIGNED
SPECTROGRAMS

Maria Hansson-Sandsten ∗

Lund University
Mathematical Statistics,

Centre for Mathematical Sciences
Box 118, SE-221 00 Lund, Sweden

ABSTRACT

The reassignment technique is used to increase the localiza-
tion for signals that have closely located time-frequency com-
ponents. For Gaussian components the reassignment based on
an optimal (matched) window spectrogram will result in a sin-
gle point where all mass is located. For non-optimal windows,
the reassignment procedure can be optimally rescaled to ful-
fill the single point mass location. Non-linear combinations
of spectrograms for different window lengths have previously
been suggested, [1], and in this paper an evaluation is made
of the performance for different non-linear combinations of
optimally rescaled reassigned spectrograms.

Index Terms— time-frequency, reassignment, localiza-
tion, Hermite function

1. INTRODUCTION

The idea of reassignment is to keep the localization of a single
component by reassigning mass to the center of gravity, [2, 3].
For multi-component signals, the reassignment improves the
readability as the cross-terms are reduced by a smoothing of
the specific distribution and the reassignment then squeezes
the signals terms. However, the reassignment technique can
be sensitive to noise disturbances and reassigned multitaper
spectrograms has also been proposed for noise reduction, [4].
Recently, the theoretical expressions for the reassigned Ga-
bor spectrograms of Hermite functions have been derived in
[5, 6]. Applying the optimal length first Hermite function
as window followed by a calculation of a reassigned spec-
trogram will result in a single point where all the mass of
the signal is localized. The reassignment procedure is, how-
ever, sensitive when several components are closely located.
This limitation is of course connected to the resolution of the
spectrogram. Depending on if the time-frequency compo-
nents are closest in the time- or frequency direction, it could
be desirable to adjust the window length to either longer or
shorter. The reassignment of the resulting spectrogram will
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then not be perfectly localized to a single point. The adjust-
ment needed for the use of a longer or shorter window can
however be calculated and applied in the reassignment proce-
dure. It is then possible to receive a number of perfectly local-
ized reassigned spectrograms using different window lengths.
A first attempt of this was proposed in [7].

In [1], ideas of combining spectrograms of different win-
dow lengths in some optimal ways were presented. The Mini-
mum Mean Cross-Entropy (MMCE) and the Minimax Cross-
Entropy solutions were shown to result in the geometrical
mean and the point-wise minimum power of the set of spec-
trograms respectively. Based on this, an evaluation of dif-
ferent optimal combinations of reassigned spectra is made in
this paper. The evaluation is limited to the combination of one
short-length and one long-length spectrogram and the result-
ing combination in the arithmetic mean, geometric mean as
well as the point-wise minimum power is evaluated for differ-
ent pairs of window lengths.

In section 2, the novel technique of rescaled reassigned
spectrogram of a Hermite function windowed Gaussian signal
is presented. Section 3 evaluates the performance of the pro-
posed technique in the non-linear combinations of reassigned
spectrograms. Section 4 concludes the paper.

2. REASSIGNED SPECTROGRAMS

A Gaussian windowed constant frequency signal

x(t) = g(t− t0)e−iω0t, (1)

where the unit-energy Gaussian function is

g(t) = π−
1
4 e−

1
2 t

2

, −∞ < t <∞ (2)

is often used to model a short non-stationary signal. The
quadratic class of distributions obey time-frequency shift-
invariance Sx(t − t0, ω − ω0) = Sg(t, ω), meaning that the
further analysis can be restricted to x(t) = g(t). The mag-
nitude of the short-time Fourier transform for the signal in



Eq. (2) applying a Hermite function window is, [5],

Mhk
g (t, ω) =

1√
2k−1(k − 1)!

(t2 + ω2)
(k−1)

2 e−
1
4 (t

2+ω2),

(3)
and the spectrogram is found as

SPhk
g (t, ω) = |Mhk

g (t, ω)|2. (4)

The corresponding reassigned spectrogram is

ReSPhk
g (t, ω) =

=
1

2π

∫∫ ∞
−∞

SPhk
g (s, ξ)δ(t− t̂(s, ξ), ω − ω̂(s, ξ))dsdξ, (5)

where for spectrograms based on the Hermite function win-
dows of a Gaussian signal the more recent formulation, [6],
can be used, i.e.,

t̂(t, ω) = t+
∂

∂t
logMhk

g (t, ω)

ω̂(t, ω) = ω +
∂

∂ω
logMhk

g (t, ω). (6)

Only the first Hermite function leads to perfect localization
when the reassignment technique is applied. For all Hermite
functions k > 1, the reassigned spectrograms will be circles,
[5]. Therefore we restrict to the first Hermite function for fur-
ther use in the reassignment procedure. For the first Hermite
function

h(t) =
1√√

2π
e−

t2

2 ,

circular symmetry gives the spectrogram (SP ),

SPhg (t, ω) = e−
1
2 (t

2+ω2). (7)

Using the reassignment operators, Eq. (6), [5], the perfect lo-
calized reassigned spectrogram is given by Eq. (5), (ReSP ).

2.1. Combinations of rescaled reassigned spectrograms

Another window length is given by the rescaling the time axis
of the first Hermite function with a factor c, i.e.,

hc(t) =
1√
c
√

2π
e−

t2

2c2 ,

and we calculate the corresponding spectrogram as

SPhc
g (t, ω) =

1

c
√

2π
|
∫ ∞
−∞

e−
s2

2c2 e−
(s−t)2

2 e−iωsds|2

=
1

c
√

2π
e−t

2

|
∫ ∞
−∞

e−
(c2+1)

2c2
s2e(t−iω)sds|2

=

√
2c

c2 + 1
e
− 1

2 (
2

c2+1
t2+ 2c2

c2+1
ω2)
. (8)

The resulting scaling of the time-axis is

ct =
(c2 + 1)

2
, (9)

and the frequency axis

cω =
(c2 + 1)

2c2
. (10)

As we now have knowledge of the actual error in the time-
frequency domain introduced by the scaled Hermite function,
the reassignment procedure can be compensated accordingly,

ReSPhc
g (t, ω) =

=
1

2π

∫∫ ∞
−∞

SPhc
g (s, ξ)δ(t−ctt̂(s, ξ), ω−cωω̂(s, ξ))dsdξ, (11)

which will give us a perfectly localized spectrum using the
window length scaled by c. In this paper, the evaluation is
limited to the combination of two spectrograms with different
window lengths, one with the scaling factor c and one with
the scaling factor 1/c. These two spectrograms are combined
in different ways and is also compared to the results of the
similar combinations of the usual spectrograms. The usual
arithmetic means are calculated as

SPari(t, ω) = (SPhc
g (t, ω) + SP

h1/c
g (t, ω))/2

ReSPari(t, ω) = (ReSPhc
g (t, ω) +ReSP

h1/c
g (t, ω))/2,

and the geometric means are calculated as

SPgeo(t, ω) =

√
SPhc

g (t, ω) · SPh1/c
g (t, ω)

ReSPgeo(t, ω) =

√
ReSPhc

g (t, ω) ·ReSPh1/c
g (t, ω),

giving the MMCE solution, [1]. The minimax cross-entropy
solution, found in the same paper, is obtained as

SPmin(t, ω) = min{SPhc
g (t, ω) SP

h1/c
g (t, ω)}

ReSPmin(t, ω) = min{ReSPhc
g (t, ω) ReSP

h1/c
g (t, ω)},

3. SIMULATIONS

The simulated signal consists of a number of equal ampli-
tude complex-valued Gaussian components, at different time-
and frequency locations. Each Gaussian component length
is 50 samples, measured as the number of samples increas-
ing 99% of the maximum power. The total signal length is
600 samples and the FFT-length in the calculations is 1024.
In Figure 1, examples of the performance of all the different
methods can be seen. The signal is in this case two Gaus-
sian components with the time distance ∆t = 34 samples
and ∆ω = 2π∆f = 2π0.03. The increased readability of
the reassignment technique is notable in Figure 1a) and b),
where examples of the resulting time-frequency representa-
tions of the usual spectrogram (SP ) with the optimal length



window (c = 1) and the corresponding reassigned spectro-
gram (ReSP ) are shown, (dB-based colour scale). For the
combined window methods, the scaling parameter c = 0.2 is
used, which will give the resulting combination of two spec-
trograms with one short window and one long window. The
short window 1/c = 5 is approximately 20 samples and the
long window with c = 0.2 has a length around 512 samples.
For the spectrogram based methods (SP , SPari, SPgeo and
SPmin) it is difficult to see that the signal consists of two
components. For the reassigned spectrogram based methods,
all plots, except perhapsReSPari, show the two components.
The ReSPgeo and ReSPmin are however better in localiza-
tion than the ReSP . As the focus is on time-frequency con-
centration, the evaluation is performed based on the Rényi
entropy of order α,

Rα(SP ) =
1

1− α
log2

∫ t1

t0

∫ ω1

ω0

(SP (t, ω))αdtdω, (12)

for α > 0, and any energy normalized time-frequency distri-
bution SP (t, ω), [4, 8, 9] . The Rényi entropy is calculated
for the often used α = 3, [9], and t0 = 128, t1 = 600−128 =
472, ω0 = 2πf0 = 0 and ω1 = 2πf1 = 2π0.25 in all
cases. The resulting Rényi entropies for the four spectrogram
based examples are R3(SP ) = 11.6, R3(SPari) = 13.4,
R3(SPgeo) = 12.3 and R3(SPmin) = 11.5, and for the
four reassigned spectrogram based examples R3(ReSP ) =
4.14, R3(ReSPari) = 4.03, and the lowest values given by
R3(ReSPgeo) = 3.21 and R3(ReSPmin) = 3.57. The val-
ues show that the visual performance is mirrored in the Rényi
entropy values.

The first evaluation is made for two Gaussian components
where one is fixed at t = 256 and f = 0.1 and one lo-
cated at larger values of t and f moving in time and fre-
quency. The evaluation is made for different values of the
scaling parameter c ranging between 0.2 and 0.995. The scal-
ing c = 0.995, 1/c = 1.005, will give two spectrograms
that are very similar to the optimal one (c = 1), although not
identical. The Rényi entropies are calculated and the mini-
mum value as a function of c is extracted for all the methods.
For the spectrogram methods, the resulting Rényi entropies
for the spectrogram (SP ) is close to R3(SP ) = 11.8 for
all time-frequency distances. The minimum Rényi entropies
for the SPari and SPgeo is found to be the same value and
the corresponding cmin = 0.995 showing that there is no
increased localization performance using the arithmetic and
geometric means for un-disturbed signals. For the SPmin
method, however, the resulting minimum Rényi entropies are
around R3(SPmin) = 11.4 given by the value cmin = 0.5
for all time-frequency distances, showing an increased per-
formance using the scaling c = 0.5 and 1/c = 2 for the two
windows.

For the reassigned methods, the minimum Rényi entropies
are depicted in Figure 2. All methods give the smallest possi-
ble Rényi entropy equal to one (for a sum of two equal com-

ponents), when the two components are at sufficiently large
time-frequency distance. The curves of ReSPari and ReSP
coincide for almost all values, explained by that the mini-
mum Rényi entropies of ReSPari are given for values of c
close to one, and we can conclude that the arithmetic mean is
not useful for the reassigned spectra for un-disturbed signals.
The minimum Rényi entropies for ReSPgeo and ReSPmin,
given from cmin = 0.2, are however significantly smaller
than for the ReSP for the values around ∆t = 55 and ∆f =
0.045 showing the increased precision of the proposed meth-
ods compared to the ReSP .

The components of Gaussian signals are disturbed by
white Gaussian noise where the SNR is defined as the av-
erage power of the signal components divided by the noise
variance,

SNR = 10 log10

1
T

∫
T
x2(t)

σ2
noise

. (13)

The parameter T is defined as the time interval where we find
at least the level of 99% of the maximum power of the sig-
nal. In the first case, we have two Gaussian components lo-
cated with ∆t = 34 and ∆f = 0.03, with the same locations
as in Figure 1. The length of the sum of the components is
T = 90, and the resulting SNR=30 dB, Figure 3a). The aver-
aged Rényi entropies of 20 realizations are shown in Figure 4
as a function of the scaling parameter c. The smallest Rényi
entropy is given by c = 0.5 for the SPmin of the spectrogram
based methods, Figure 4a). The SPgeo and SPari are not
superior to the optimal spectrogram SP . For the reassigned
methods, similarly as for the noise-free case, we can find
values of c where the ReSPgeo and ReSPmin give smaller
Rényi entropy than the usual optimal ReSP . The optimal
value of c, (c = 0.6−0.9) is however larger than in the undis-
turbed case, (c = 0.2), which indicates that the parameter
choice is sensitive to noise. For all spectrogram based meth-
ods the standard deviation of the 20 Rényi entropies are very
small but the mean value± one standard deviation is depicted
with crosses for the SP and the SPmin anyway in Figure 4a).
For the reassigned methods however, the standard deviation
is much larger which can be seen in Figure 4b) where this
is indicated for the ReSP and for the ReSPmin. The other
methods have similar behavior.

For the case of low SNR=10 dB, there are three Gaussian
components located with ∆t = 34 and ∆f = 0.03 between
the first a second one (similar as before) and one additional
component with ∆t = 34 and ∆f = 0.03 between the sec-
ond and third one. The signal power of the SNR is calcu-
lated based on the total power of the Gaussian components
divided by T = 120, Figure 3b). The average Rényi entropies
of 20 realizations are shown in Figure 5 where the results
of the spectrogram based methods show similar behavior as
for the previous simulation, (although located at a higher val-
ues). The standard deviation has also increased compared to
the previous example. For the reassigned methods, a slightly
changed performance is seen, the ReSPgeo and ReSPmin



still give smaller Rényi entropies than the usual ReSP , al-
though now the optimal parameter choice seems to be c close
to one, again indicating the parameter sensitivity of noise.

4. CONCLUSIONS

The spectrograms and rescaled reassigned spectrograms are
combined in different linear and non-linear estimates, where
the localization performance is evaluated using the Rényi en-
tropy measure. The results show that the point-wise mini-
mum power estimate and geometric mean results in increased
localization compared to the reassigned optimal spectrogram.
The parameter choice (window lengths) is however sensitive
to noise disturbances.
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Fig. 1. Example of the time-frequency representationsfor
some of the methods applied to estimation of two closely lo-
cated Gaussian signals.
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Fig. 2. The minimum Rényi entropy for the different reas-
signed methods for two Gaussian components of different
time-frequency distances ∆t and ∆f .
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Fig. 3. a) Case 1: The two-component data with small dis-
turbance, SNR=30 dB; b) Case 2: The three-component data
with larger disturbance, SNR=10 dB.
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Fig. 4. The averaged Rényi entropies for the different methods
for three Gaussian components disturbed by white noise with
SNR=30 dB.
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Fig. 5. The averaged Rényi entropies for the different methods
for three Gaussian components disturbed by white noise with
SNR=10 dB.


