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ABSTRACT

To tackle the growing demand for high efficient implemen-

tations of video decoders in a vast set of heterogeneous plat-

forms, a high performance implementation of the HEVC de-

quantization and inverse Discrete Cosine Transform (IDCT)

modules is proposed. To efficiently take advantage of the

several different GPU architectures that are currently avail-

able on these platforms, the proposed modules consist on uni-

fied OpenCL implementations, allowing their migration and

acceleration in any of the available devices of current het-

erogeneous platforms. To achieve such objective, the mem-

ory accesses were highly optimized and no synchronization

points were required, in order to attain the maximum per-

formance. The presented experimental results evaluated the

proposed implementation in three different GPUs, achieving

processing times as low as 6.39 ms and 6.51 ms for Ultra HD

4K I-type and B-type frames, respectively, corresponding to

speedup factors as high as 18.9× and 16.5× over the HEVC

Test Model (HM) version 11.0.

Index Terms— Video coding, HEVC, de-quantization,

transform coefficient decoding, Graphics Processing Unit

(GPU), parallel processing

1. INTRODUCTION

In the past few years, the High Efficiency Video Coding

(HEVC) standard established as the new state of the art on

video compression. When compared with the previous stan-

dards, it has been shown that HEVC encoders can achieve

equivalent subjective visual quality as H.264/AVC encoders,

when using approximately 50% less of the bit rate. However,

such coding efficiency comes at cost of a substantial increase

of the computational complexity of both the video encoder

and the decoder.

One of the introduced improvements by HEVC refers to

the new quantization and transform modules. Up to 10.1% of

the bit rate is saved when larger transform sizes (16×16 and
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32×32) are used on top of the smaller transform sizes (4×4

and 8×8), in order to better reduce the spatial pixel correla-

tion [1]. However, the usage of larger core transforms also

significantly increases the HEVC encoder and decoder com-

plexity. This is particularly relevant when the implementation

of video decoders is restricted by performance constrained

terminals, as it is the case of mobile and portable devices.

On the other hand, the recently proposed Open Comput-

ing Language (OpenCL) [2] framework has arisen as a highly

viable alternative to exploit task-parallel and data-parallel

compute capability across multiple heterogeneous devices.

As a result, OpenCL has been gradually supported by several

CPU – Intel, AMD, ARM, etc. – and GPU manufacturers –

AMD/ATI, NVIDIA, Intel, ARM (Mali), Imagination Tech-

nologies (PowerVR), etc. – allowing the realization of unified

program implementations that can be executed in any of the

available CPU and GPU devices, which offers a highly con-

venient way to migrate and accelerate the most computational

demanding parts of the program.

In this paper, it is presented a highly optimized parallel

implementation of the HEVC de-quantization and inverse

transform modules based on an extensive exploitation of

the parallel processing power offered by modern GPUs. By

making use of an unified programming based on OpenCL,

the obtained experimental results demonstrated the ability

to achieve processing times as low as 6.39 ms and 6.51 ms

for Ultra HD 4K I-type and B-type frames, respectively, cor-

responding to speedup factors as high as 18.9× and 16.5×

when compared to the CPU reference software.

Such an efficient and highly flexible parallelization is re-

garded as an important complementary step towards its inte-

gration with other video decoding modules that have already

been parallelized [3], envisaging the possibility to full paral-

lelize the HEVC decoder in the GPU, capable of handling real

time HEVC decoding for Ultra HD 4K video sequences.

The remaining of this paper is organized as follows. Sec-

tion 2 revises the last proposed algorithms for IDCT parallel

implementation and the HEVC transform coefficient decod-

ing. In Section 3, the HEVC de-quantization process and in-

verse transform is briefly revised. The proposed algorithm

and consequent parallel implementation is presented in Sec-



tion 4. The experimental results and the addressed conclu-

sions are shown in Sections 5 and 6, respectively.

2. BACKGROUND WORK

Along the past years, several video encoding and decoding

modules have been implemented in GPU devices, such as the

efficient motion estimation implementations on CPU + GPU

platforms that were proposed by Xiao et al. [4] and Mom-

cilovic et al. [5], for HEVC and H.264/AVC respectively.

Regarding the DCT, an OpenCL implementation of the

real (non-integer) DCT for image compression was already

proposed in [6], by using a floating-point representation. Nev-

ertheless, not only is such non-integer transform not compli-

ant with the most recent video standards, but the strict tem-

poral requirements that are imposed in video coding are sig-

nificantly more demanding than in image processing. In what

concerns the transform module for video, several algorithms

were already proposed to alleviate the complexity of the en-

coder side, like the zero block detection [7], which was based

in [8] to eliminate redundant computations. In the decoder

side, parallel implementations often pose difficult challenges,

not only because the decoder should be able to support bit-

streams produced by any encoder configuration, but also be-

cause the processing platform at the decoding device often

imposes highly restrictive processing capabilities.

As an example, Yong et al. [9] exploited the NEON Sin-

gle Instruction Multiple Data (SIMD) instruction set exten-

sion of the ARM platform to accelerate the transform and in-

verse transform modules, to be applied in mobile and tablet

devices, achieving a speed up of 5.6 over the reference soft-

ware for Full HD sequences.

Hardware implementation of the HEVC IDCT was also

proposed in [10], where the proposed architecture can decode

Ultra HD 4K video sequences at 30 frames per second with an

operating frequency of 90 MHz. However, such implementa-

tions represent different compromises in terms of energy ef-

ficiency, resources utilization and programmability, prevent-

ing a fair comparison with high-performance computing plat-

forms, like GPUs.

3. HEVC RESIDUAL PROCESSING MODULE

According to the HEVC standard, each frame is divided in

Coding Three Units (CTU) of 64×64, 32×32 or 16×16 sam-

ples. Each CTU can be further partitioned in smaller blocks,

denoted by Coding Units (CU), according to a quadtree struc-

ture. Each CU is divided in the Prediction Unit (PU) and

the Transform Unit (TU). The TU is further split in smaller

blocks, named Transform Blocks (TB), which are applied to

core transforms of sizes 4×4, 8×8, 16×16 and 32×32.

After the entropy decoding, the residual data of different

TUs can be processed in parallel. Each TU is composed by 3

TBs, one for the luma and two for the chroma component.
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Fig. 1. Processing flow of the HEVC residual data decoding.

When the usual 4:2:0 chroma subsampling is adopted, the

chroma TB is four times smaller than the corresponding luma

TB, although they have the same size for TB of 4×4 pixels.

Similarly to the H.264/AVC, only integer core transforms

are specified by the HEVC standard, to avoid the introduction

of rounding drifts, both at the encoder and the decoder, caused

by different rounding and floating point representations. As

a consequence, the HEVC 4×4 to 32×32 transform kernels

are based on the integer DCT [1]. The inverse DCT kernels

are the same for luma and chroma TBs, except for the 4×4

luma TB of intra blocks, where an integer Inverse Discrete

Sine Transform (IDST) is applied.

For each TB, the overall procedure is controlled by three

flags: the Transquant Bypass Flag (TBF), the Coded Block

Flag (CBF) and the Transform Skip Flag (TSF). When the

TBF is set, the de-quantization and the inverse transform are

bypassed, which means that the residual data already corre-

sponds to the decoded coefficients. The CBF indicates when

there is some residual data in the TB, while the TSF signs the

decoder to skip the 2D inverse transform module. In this case,

the residual data is directly obtained after the de-quantization.

Figure 1 depicts the processing of the HEVC residual

data, corresponding to the coefficients that are obtained at the

output of the entropy decoder. The de-quantization module

implements the HEVC inverse scaling, which depends of the

quantization parameter (QP) and on the adopted TB size.

These scaling factors ensure the preservation of the normal-

ization property in the transform domain. The 2D inverse

transform is specified according to the usual separable 1D

column and row decompositions, where the core transform is

chosen according to TB size and prediction mode: i) each col-

umn of the de-quantized transform coefficient block (column

vector d) is firstly transformed into a row vector e = dTC

(C denotes the core transform matrix); ii) each sample is

conveniently scaled by a function g = f(e); iii) each scaled



intermediate sample row (row vector g) is transformed into

the column vector r = CTgT , which is finally scaled to

obtain the residual data.

4. PARALLEL GPU IMPLEMENTATION

To ensure the maximum efficiency of the proposed paral-

lelization on the GPU, the residual data obtained at the en-

tropy decoder is appended with a control word by the CPU.

For such purpose, convenient control information is encoded

by using single-byte packets for each 4×4 block, which re-

duces the required memory transfers to the GPU. Such control

information, with the respective bit positions, is described in

Table 1.

Bits 0 and 1 are used as a binary code to represent the

used luma TB size: 4×4, 8×8, 16×16 or 32×32. Since the

coefficients from all TBs shall be sent to the GPU, the flags

TBF and CBF can be merged into one (TBF = 1 or CBF =
0). When this composite flag is set, the TB coefficients will be

either the residual data or a null block and the whole process is

bypassed. Due to the existing dependency between the three

flags presented in Figure 1 and by merging the flags TBF and

CBF, there are only three possible flag combinations for each

TB, meaning 27 flag combinations for luma and chroma TBs.

This information can be stored in a five bits binary code (bits

2 to 6), which can be easily encoded in the CPU by using a

lookup table and decoded in the GPU with bitwise operations,

to reduce memory requests. The most significant bit is used

to select the integer IDST or IDCT core transform, used only

for the 4×4 luma TB.

Figure 2 represents the processing flow of the HEVC

de-quantization and 2D inverse transform for a single 4×4

TB. The same procedure is straightforwardly extended when

others TB sizes are processed. In the de-quantization step,

the OpenCL work-items (WIx) start by performing the de-

quantization scaling and store the resulting transposed block

in the local memory, to be used in the next steps. According

to the OpenCL specification, this local memory can be shared

Bit Data information

7 Prediction mode: inter or intra

6 to 2 Binary code to encode the three flags

1 and 0 Binary code to encode the four possible TB sizes

Table 1. HEVC IDCT information and respective bit position.

by all work-items in that work-group [2]. In the particular

case of the GPU, this local memory is on-chip and has higher

bandwidth and lower latency than private or global memory.

If the TSF is set, the block will be immediately stored in the

global memory, as residual data.

For each line of the de-quantized transposed block (d)

each work-item is responsible for: i) the dot product with

one single column of the core transform; and ii) the sub-

sequent intermediate scaling. Since each work-item is re-

sponsible for the same column j of the core transform ma-

trix in both 1D inverse transforms, the assigned vector cj =
[c0j , c1j , . . . , cNj ]

T is copied from the constant memory to

the private memory region of the work-item, which has a sig-

nificant lower latency than the constant memory. The result-

ing vector is stored back in the local memory as a column

vector, to be later handled in the next 1D inverse transform.

Upon the computation of the 1D row inverse transform

and of the final scaling step, one pixel-domain residual block

line is obtained, which is stored in the OpenCL global mem-

ory. Since the resulting data is aligned in raster scan order,

only one memory instruction is needed to implement this step.

For larger TB sizes, only half of the work-items in the work-

group are needed to process the chroma TBs.

To avoid any divergence among work-items, four inde-

pendent OpenCL kernels are launched in parallel to process

the residual data, one for each TB size. At this respect, it

is worth noticing that the whole algorithm was implemented

without the need for any synchronization point, which could

induce a reduction of the overall performance. In the Figure

3, it is shown an execution flow example with two OpenCL

command queues (CQ), where KN is the OpenCL kernel for
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the N×N TB. To ensure an efficient overlap between the re-

quired data transfers to the GPU with the kernel executions,

the residual frame to be decompressed is divided horizontally

and processed in different CQ. Accordingly, the received co-

efficients are sent to the GPU and the residual data is obtained

after the four OpenCL kernel executions. Furthermore, for

GPUs with overlapped kernels capability, the kernel overlap-

ping is also applied at the end of each kernel, in order to use

the full capability of the GPU.

Moreover, to take full advantage of the maximum GPU

processing capability, the number of work-items assigned to

each work-group is different for each individual OpenCL ker-

nel (KN ). Accordingly, the work-group size is chosen by tak-

ing into account the GPU capability and the amount of re-

sources that are required for each kernel (e.g., amount of lo-

cal and private memory). Nevertheless, the work-group size

is always a multiple of the TB size.

5. EXPERIMENTAL RESULTS

To assess and experimentally evaluate the processing through-

put of the proposed OpenCL parallel implementation, the

common test conditions and configurations defined in [11]

were adopted, by considering video bit streams of all se-

quences from classes A and B (the greatest frame resolu-

tions). An additional set of sequences with 3840×2160 pixel

resolution (Ultra HD 4K) from the SVT High Definition Multi

Format Test Set [12], composed by CrowdRun, ParkJoy and

DucksTakeOff, was also evaluated. Those sequences will be

referred to as class S (see Table 2).

The proposed de-quantization and inverse transform par-

allel implementation was integrated in the HEVC Test Model

(HM) version 11.0 [13] decoder, which was also used as one

of the benchmarks, for baseline comparison purposes. Al-

though the proposed parallel implementation can be executed

in any OpenCL supporting device (including mobile GPUs),

it was decided to evaluate the attained processing efficiency

in state-of-the-art GPU architectures supporting the latest

communication-computation kernel overlapping techniques.

Accordingly, the proposed implementation was prototyped

in an off the shelf desktop system, which includes an Intelr

Core™ i7-4770K CPU @ 3.50GHz and three NVIDIA GPUs

compliant with OpenCL version 1.1: Tesla K20c @ 706 MHz

(K20c), Tesla K40c @ 876 MHz (K40c) and GeForce GTX

780 Ti @ 1046 MHz (G780).

The size of the 1D work-groups for each kernel KN

were chosen according to the resources that are available in

each of the three used GPUs and to each OpenCL kernel

requirements. As an example, 64 work-items were used in

each work-group for the K32 kernel, since this kernel re-

quires 32×32×16 bits space in the OpenCL local memory to

store the intermediate transformed block for each group of

32 work-items. In fact, a greater number of work-items per

work-group would decrease the kernel performance, since

the work-group occupancy in the GPU multiprocessor would

also diminish due to the local and private memory limitation.

However, the 1D work-group size can increase when the TB

Class

(Resolution)
Sequence FPS

I Frames (All Intra) B Frames (Random Access)

HM 11.0 K20c K40c G780 HM 11.0 K20 K40 G780

S

(3840×2160)

CrowdRun 50 117.32 12.61 8.95 6.44 55.78 10.03 6.72 6.50

ParkJoy 50 115.64 12.94 9.22 6.46 107.46 13.20 9.38 6.51

DucksTakeOff 50 120.79 12.15 8.61 6.39 41.44 9.97 6.56 6.47

A

(2560×1600)

Traffic 30 59.05 6.90 4.89 3.43 9.24 5.35 3.46 3.39

PeopleOnStreet 30 59.23 6.71 4.77 3.41 23.23 5.47 3.57 3.42

Nebuta 60 63.84 7.16 5.86 4.13 53.76 6.02 4.97 3.58

SteamLocomotive 60 61.99 6.96 4.95 3.60 28.58 5.70 3.95 3.45

B

(1920×1080)

Kimono 24 32.10 4.00 3.02 2.35 9.04 3.04 2.16 2.00

ParkScene 24 30.18 3.79 2.70 2.19 5.44 3.02 2.12 1.94

Cactus 50 29.60 3.77 2.69 2.26 7.79 3.15 2.27 2.08

BQTerrace 60 31.73 3.53 2.37 2.11 8.68 3.05 2.19 2.05

BasketballDrive 50 32.56 3.84 2.66 2.29 9.70 3.20 2.29 2.11

Table 2. Frame processing time (in milliseconds) for the parallel implementations of the HEVC de-quantization and inverse

transform modules.



size decreases. As an example, for K16, K8 and K4, 96, 128

and 224 work-items were used per work-group, respectively.

Table 2 depicts the obtained average frame processing

times for the HEVC de-quantization and inverse transform

for each of the considered test sequences. A QP equal to 22

was adopted, corresponding to the most time consuming rec-

ommended case [11]. The experimental data was divided in I

and B frames, from All Intra (AI) and Random Access (RA)

configurations, respectively. The Low Delay configuration

was not taken into account, since the corresponding results

for B frames have a similar timing as in the RA configura-

tion. The same happens with the I frames in the RA and AI

configurations. Accordingly, this setup avoids a misleading

analysis between I and B frames.

Naturally, the average execution time increases with the

frame resolution. Nevertheless, although the HM 11.0 CPU

implementation presents a significant variability from frame

to frame (since B frames require a lower amount of opera-

tions than I frames), the timing for all GPU implementations

is almost constant for a specific resolution and it is indepen-

dent from the QP, slice type or video content, since it mainly

depends on the amount of data to be processed.

As it can be observed, all the conducted evaluations re-

vealed the capability to process all video sequences in real-

time, reaching speed up values as high as 18.9× when com-

pared to the HM 11.0 CPU implementation. In the worst

case scenario, corresponding to 50 frames per second (fps)

for class S, one frame should be decoded in less than 20 ms.

For such processing conditions, the G780 GPU implementa-

tion required less than 6.51 ms to perform the de-quantization

and inverse transform, leaving more time to execute the re-

maining video decode modules.

6. CONCLUSION

An efficient OpenCL parallelization of the HEVC de-quanti-

zation and inverse transform to be executed on GPU acceler-

ators was presented in this paper. The conducted GPU paral-

lelization can handle the required real-time decode requisites,

by adopting a new approach for the HEVC de-quantization

and inverse transform with minimal memory accesses and no

synchronization points. To the best of the authors’ knowl-

edge, the proposed GPU parallelization of the HEVC residual

data processing module is one of the first in the literature.

By exploiting the full GPU computational resources, the pro-

posed implementation was able to achieve speedup values as

high as 18.9×, obtained for the Ultra HD 4K (3840×2160

pixels) video sequence DucksTakeOff, corresponding to an av-

erage frame processing time of 6.39 ms.
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