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ABSTRACT

This work presents a study of sensor network calibration
from time-difference-of-arrival (TDOA) measurements for
cases when the dimensions spanned by the receivers and the
transmitters differ. This could for example be if receivers
are restricted to a line or plane or if the transmitting ob-
jects are moving linearly in space. Such calibration arises in
several applications such as calibration of (acoustic or ultra-
sound) microphone arrays, and radio antenna networks. We
propose a non-iterative algorithm based on recent stratified
approaches: (i) rank constraints on modified measurement
matrix, (ii) factorization techniques that determine transmit-
ters and receivers up to unknown affine transformation and
(iii) determining the affine stratification using remaining non-
linear constraints. This results in a unified approach to solve
almost all minimal problems. Such algorithms are important
components for systems for self-localization. Experiments
are shown both for simulated and real data with promising
results.

Index Terms— Time-difference-of-arrival, anchor-free
calibration, sensor networks.

1. INTRODUCTION

Sound ranging or sound localization are used to determine the
sound source using a number of microphones at known loca-
tions and measuring the time-difference of arrival of sounds.
Such techniques are used today with microphone arrays to
enable beamforming and speaker tracking. Calibration of a
sensor network using only TOA or TDOA measurements is a
nonlinear optimization problem, for which proper initializa-
tion is essential. Several previous works rely on prior knowl-
edge or extra assumptions of locations of the sensors to ini-
tialize the problem. In [1], the distances between pairs of
microphones are manually measured and multi-dimensional
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scaling is used to compute microphone positions. Other op-
tions include using GPS [2] to get approximate locations, or
using transmitter-receiver pairs (radio or audio) that are close
to each other [3, 4, 5]. In [6] it is shown how to estimate addi-
tional microphones, once an initial estimate of the positions of
some microphones are known. Another line of work focus on
solving the initialization without any additional assumptions.
Initialization of TOA networks has been studied in [7], where
solutions to the minimal case of 3 transmitters and 3 receivers
in the plane is given and in [8], where solutions to the minimal
cases of (4, 6), (5, 5) and (6, 4) receiver-transmitter combina-
tions are presented. Initialization of TDOA networks is stud-
ied in [9], where solutions were given to non-minimal cases in
3D (10 receivers, 5 transmitters) for TDOA and in [10] where
four cases of (9, 5), (7, 6) and (6, 8) receiver-transmitter com-
binations are presented. However solvers for the minimal
cases (10, 5), (7, 5), (6, 6) and (5, 9) are still open research
problems. A related work that is based on iterative solvers
and similar rank constraints as we use is [11].

In this paper we study the initialization network calibra-
tion problem from only TDOA measurements for the case
where there is a difference in dimension between the spaces
spanned by the receivers and by the transmitters. We combine
the techniques developed in [8] and [10]. This makes it pos-
sible to solve for many (almost all) of the relevant minimal
cases. Solving these cases is of theoretical importance. The
solvers can also be used in RANSAC [12] schemes to remove
outliers in noisy data. The methods are validated both on syn-
thetic and real data. The node localization is cross-validated
against computer vision based approaches.

2. PROBLEM FORMULATION

Under the assumption that signals travel at constant speed
measuring time of arrival (TOA) is equivalent to measuring
distance. TOA requires synchronization between transmitters
and receivers in the sense that both transmitting time and time
of arrival is available for analysis. This is often not the case
and only relative differences in time or distance is measur-



able, with either only synchronized transmitters or receivers.
For clarity in the following discussions we will always as-
sume that the receivers are synchronized.

Given a set {ri} of receivers and a set of {sj} of transmit-
ters a TDOA measurement is

fij = ||ri − sj ||2 + oj , (1)
where oj is an unknown offset, compensating for the lack of
synchronization between transmitters and receivers.

If the size of the set {ri} is k and the size of {sj} is n,
we have kn measurements {fij}. Assuming all positions are
unknown, the basic TDOA problem is
Problem 1. Given all pairwise measurements {fij} find all
positions ri and all positions sj

Note that solving problem 1 implicitly includes solving
the unknown offsets oj . The topic of this paper is to determine
for what choices of k and n problem 1 is solvable when either
transmitters or receivers can be seen as belonging to a lower or
higher dimension than its counterpart and gives closed formed
solutions for these cases. This leads us to the subproblems
Problem 2. Ds −Dr = 1, and structure as in Problem 1.
Problem 3. Dr −Ds = 1, and structure as in Problem 1.

Here Dr is the dimension of measurements r and Ds the
dimension of s.

Since all obtained measurement in both the TOA and
TDOA setting depend only on relative distances between
points, subjecting all points in any given constellation to a
common Euclidean transformation will not affect the mea-
surements. This observation has two important implications,
summarized in the following lemma.

Lemma 1. Problem 2 and problem 3 cover all difference in
dimension configurations and can only be solved up to a Eu-
clidean transformation of the coordinate system.

Proof. The second part should be clear as there is no fixed
global coordinate system, and distances are preserved under
Euclidean transformations.

Since one set of points span a lower dimensional space
the transformation that allows us to express these points as
(xT ,0T ) exists. Assuming the higher dimesion is m and the
lower is k de distance dij between points xi and yi fulfill

||(xT
i ,0

T )T−yj)||2 =

k∑
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(x
(i)
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(j)
h )2+
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h=k+1

y
(j)2
h = d2ij .

Assume now that for any fixed j and arbitrary number of
points xi all true coordinates for h = 1, · · · , k are known,
implying that the first sum is known in each equation, and we
want to determine the remaining coordinates for yj, the above
is then

k∑
h=1

(x
(i)
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(j)
h )2︸ ︷︷ ︸

eij

+
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h = d2ij − eij ∀ i.

But since for any two choices of i deducted from each
other the left hand side is 0, we only have 1 independent equa-
tion irregardless of how many points xi we have. Since we
don’t measure distances between points yj , adding more such
points gives (m−k) more unknowns and 1 more independent
equation. Thus The last coordinates can only be solved up to
distance from the lower dimensional subspace, i.e. we can
replace the last coordinates with one that represents this dis-
tance.

Naturally this give an unsolvable ambiguity if the differ-
ence is larger than 1. For instance if the lower dimension is
one and the higher is 3, we can only solve for the higher di-
mension up to a rotation around the the line.

3. MINIMAL CASES IN DIFFERENCE IN
DIMENSION

Each pair (ri, sj) give a measurement fij and there are
Dr unknowns for each r and Ds + 1 unknowns for ev-
ery s. The number of unknowns per sensor is at most
D∨ = max(Dr,Ds). If we set D∧ = min(Dr,Ds) the
following must hold for problems 2 and 3 to be solvable

kn ≥ Drk + (Ds + 1)n− (D∧ + 1)D∧
2

. (2)

The kn, Drk and Ds terms are straightforward. The final
term comes from the ambiguity in coordinate system and is
as follows: Place the first lower dimensional coordinate at
the origin, place the second along the first axis, the third in
the plane spanned by the first and second axis, continue until
the entire subspace is defined and place all remaining lower
dimensional points in the subspace.

It is shown in [10] that the underlying TOA difference in
dimension case requires 1 +D∧ +D∧(D∧ + 1)/2 of sensors
in the lower dimension to be solvable. It is straightforward to
confirm that the generalization with offsets does not alleviate
this requirement. This together with equation 2 give us the
necessary requirements on k and n and all solvable cases for
problem 2 and 3 are summarized in figure 1a and 1b respec-
tively.

4. SOLUTION

To derive solvers for feasible k and n we will employ rank
constraint strategies introduced in [8] and [14] and modify
them for the dimension difference setting. In the cases where
the offsets can be completely solved separately from the re-
maining unknowns we will use methods from [10] to solve for
the remaining unknowns. For cases where the offset cannot be
computed separately we will show how the rank constraints
can be used in conjunction with other constraints to obtain
the full solution. Implementation is based on techniques pre-
sented in [15].

4.1. Rank Constraints
The rank constraint strategy requires a reformulation of the
measurement equations, as well as some observations on their
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(a) Solvable configurations for problem 2.
#

Sy
nc

hr
on

iz
ed

(k
)

1
2

3
4

5
6

7
8

9
10

# Unsynchronized (n)
1 2 3 4 5 6 7 8 9 10

Ds = 2

Ds = 1

vi

vii

viii

ix

x

(b) Solvable configurations for problem 3.

Case (k, n) Solutions Solved

i (9, 3) 75 This paper
ii (7, 4) 1 This paper
iii (6, 5) 10 This paper
iv (5, 2) 10 In [13]
v (4, 3) 6 In [13]

vi (5, 6) 5 This paper
vii (4, 9) NA unsolved
viii (5, 3) 1 This paper
ix (4, 4) 5 This paper
x (3, 5) 16 This paper

(c) Properties of solvers for problem 2 and 3.

Fig. 1: Summary of all solvable cases for difference in dimensions TDOA, in dimensions 1-3. All configurations (k, n) below
the green curves mark solvable cases when the lower dimension is 1, all configurations below the blue lines mark solvable
configurations when the lower dimension is 2. The table gives the properties of the configurations.

relations to the locations of the sensors. Assuming the coordi-
nates of the lower dimension is ”zero-padded” as per the pre-
vious discussions we have that (fij − oj)

2 = (ri− sj)
T (ri−

sj). If we introduce the vectors Ri = [1 rTi rTi ri]
T and

Sj = [sTj sj−o2j sTj 1]T we get by collecting Ri into the
(D∨ + 2) × k matrix R and Sj into the n × (D∨ + 2) ma-
trix S the relation F = RTS , where F is a matrix contain-
ing {f2

ij − 2fijoj}. The rank of this matrix is bounded by
(D∨+2) as k and n increases, and the only unknowns are the
offsets oj . It is possible to further exploit the structure of R
and S to obtain tighter rank constraints, the details are shown
in [14] but it is based on exploiting the row of 1s in R and
the row of 1s in S. Effectively we will introduce two matrices
Ck and Cn both on the form [−1 I]T that by the operations
R̂T = CT

kR
T and Ŝ = SCn turns the rows of ones into

zeros. This results in the final system

F̂ = CT
kFCn = R̂T Ŝ , (3)

that due to the introduction of zero rows holds after removing
the last row of R and the first row of S. Note that these are
not the zero rows. The resulting matrix F̂ is of rank at most
D∨. However as S and consequently Ŝ is rank deficient prior
to the above operations due to the last coordinates of sj being
zero, the rank of F̂ is in fact at most D∧. It has entries

f̂ij = gij − g0j − gi0 + g00, (4)

where gij = f2
i+1,j+1−2fi+1,j+1oj+1. Therefore, given that

each entry of F̂ is a (first order) function of the unknown off-
sets {o1, . . . , on}, we can enforce these rank constraints on
the sub-matrices of F̂. Specifically, any matrix has the entries
as in (4), all its (D∧ + 1) × (D∧ + 1) sub-matrices will be
rank-deficient and have rank D∧. The existence of such sub-
matrices is not guaranteed. For instance case (5,2), the result-
ing compacted matrix will be of size 4 by 1, and D∧+ 1 = 2.
This gives equivalently constraints on the determinants of the
set of (D∧ + 1)× (D∧ + 1) sub-matrices ΛD∧+1 :

detQ = 0, ∀Q ∈ ΛD∧+1. (5)

For a (k − 1) × (n − 1) matrix F̂, the number of constraints
Nc is

Nc = |ΛD∧+1| =
(

k − 1
D∧ + 1

)(
n− 1
D∧ + 1

)
.

Each constraint is a polynomial equation of degree D∧ + 1.
In general, for a case with k receivers and n transmitters,

with the minimal affine span of the two as D∧, there exist
No = (k − 1−D∧)(n− 1−D∧) linearly independent con-
straints on the offsets in (5). For cases where n = No, de-
termining the offsets using only the rank constraints is min-
imal and well-defined. For linear cases, these correspond to
(4, 4), (5, 3). And for the planar cases, (7,4) and (5,6) are the
two minimal problems for determining the offsets. Note that
such properties are independent of Ds and Dr.

For cases where No > n, the rank constraints are overde-
termined for the offsets. There are two ways to estimate the
offsets using these overdetermined set of equations. The first
one is to utilize the fact that there exist a unique solution to the
overdetermined system, using techniques from [9], the offsets
can be solved linearly. The second scheme is to ignore a sub-
set of constraints such that the remaining constraints render
the problem minimal and well-defined. One possible draw-
back of this scheme is the possible existence of multiple so-
lutions.

If the minimal TDOA cases that are minimal in deter-
mined offsets using only the rank constraints, i.e. (5,3) and
(5,6), the full problem can be solved by combining the cor-
responding linear difference in dimension TOA solver from
[10]. Again accounting for the inherent ambiguity of the last
coordinate in the high dimensional space, the linear solver is
unique and the number of solutions is entirely dependent on
the number of solutions of the offset equation. These are sum-
marized in figure 1c. In a few cases there are multiple valid



solutions to a given set of measurements, but in general the
excess solutions are complex and can be directly discarded.

As for the cases where the rank constraints give under-
determined systems, one needs to exploit other, often non-
linear constraints.

4.2. Distance Equations
We here derive additional non-linear equations on the offsets.
To make the presentation clear, in the following discussion, it
is assumed that the receivers are in the lower dimension. It
is straightforward to convert the formulation for cases where
the transmitters are in the lower dimension.

According to [8], each factorization of F̂ = R̂T Ŝ pro-
vides the receiver and transmitter coordinates up to an coor-
dinate change described by a full rank matrix L and transla-
tion b. Let R̃ be the first D∧ columns of the rank-D∧ matrix
F̂ which is parameterized by the offsets o. This then corre-
sponds to a choice of factorization that has the identity matrix
on the corresponding places in Ŝ. Based on this and the for-
mulation in (3), we can write the positions of the receivers
ri = Lr̃i(o). Following the derivation in [8] this gives the
following constraints on the unknown transformation H and
translation b for i = {1, . . . ,m− 1} ,

d2i+1,1 − d211 = r̃Ti Hr̃i − 2bT r̃i, (6)

where dij = fij − oj , H = (LTL)−1 ∈ RD∧×D∧ and b ∈
RD∧ . Since the equations are linear in the entries in H and b,
the system can be rewritten as

W

hb
1

 = 0, (7)

where W is a (m − 1) × k matrix parameterized by the off-
sets and h is the vector representation of the unknowns in H.
Here k = D∧(D∧ + 1)/2 +D∧ + 1. From (7), we know that
all k × k sub-determinants of W are equal to 0. By forming
these equations, we remove the unknowns h and b and reduce
(6) to a polynomial system of only n unknowns. Combining
these equations with the rank constraints, one arrives at a set
of well-defined equations for the offsets. In principle, both the
(3,5) (9,3) as well as the (4,9) cases can be solved using this
formulation. Fast and stable solvers have been implemented
based on Gröbner basis methods for (3,5) and (9,3) cases. Ef-
ficient solvers for the (4,9) case is still difficult to derive due
to the large number of unknowns (9 offsets) and high degree
(degree 9). Such idea can also be extended to cases where
D∧ = 3. The number of solutions for these cases using the
above solving strategy are presented in figure 1c.

5. SUMMARY
The classification for the found cases is shown in figure 1.
Two cases were solved using direct manipulation of the dis-
tance equations in [13]. Some cases are overdetermined by
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Fig. 2: Stability of the derived solvers, except (i).

one equation, however further reducing either k or n would
make the system underdetermined and thus unsolvable. As
described above this sometimes allows for linear solvers to
be employed. In general the resulting systems have relatively
low total degree and few solutions, with the exception of case
(i). Case (vii) is even more complex and using the presented
strategy we were unsuccesful in constructing a solver that dis-
played good numerics.

6. EXPERIMENTS
We will present the numerical stability for all implemented
solvers using generated examples. We further will present re-
sults on real data using a microphone setup in 2D, with sounds
in 3D. The accuracy of the solution will be measured by com-
paring it to a 3D reconstruction from images. The visual re-
construction is obtained using standard techniques from com-
puter vision.

6.1. Numerical Stability
Synthetic data is generated by randomly placing sensors in
a [0, 1] cube, meeting the requirements of dimesnionality as-
sumed by the solvers. The solver for case (i) requires that the
original equations are expanded to a 1400 by 500 coefficient
matrix, and it has very poor stability even if no noise is added.
Typical accuracy without noise is RMS on the order of 10−4.
All other solvers had consistent accuracy of the order 10−10

to 10−13 with the exception of (x) that on rare occasions had
values of 10−2, skewing its mean quite severely. We believe
this is caused by close to degenerate configurations. This be-
havior is also visible in the presence of noise, as illustrated in
figure 2. The figure shows the mean over 200 cases for dif-
ferent levels of relative added gaussian noise, applied to the
measurements. The RMS is calculated against the generated
ground truth (GT). Again the poor performance of (x) is due
to single events with substantially less accurate result.

6.2. Reconstruction of Microphone Array
A total of 8 microphones are placed on a floor (2D), see figure
3, and sequences of distinct sounds generated from several
locations in the room (3D). The sounds are far enough apart
to be distinct in the matching, but due to echoes, disturbances



Fig. 3: Microphones placed on office floor.
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Fig. 4: Reconstructed layout of microphone positions (red
stars) and motion trajectory of sound sources (blue circles and
line), all units in meter.

exact time differences are unavailable, and in some cases the
matches are bad enough to be considered outliers. We then
use the (6,5) minimal solver in a RANSAC-like algorithm.
As a final step the solution is locally optimized using all found
inliers. The result is very promising with an RMS of 6.7cm
in microphone positions between the visual and audio based
reconstructions. The reconstructed path for the sound source
is consistent with the dimensions of the room, and form a
smooth track. The reconstructed layout is illustrated in figure
4.

7. CONCLUSIONS

We have classified all solvable minimal cases in a difference
in dimension TDOA setting. Further we have devised solution
strategies and implemented solvers for most of these cases.
With the exception of 2 solvers the overall performance is
excellent, and one of the bad solvers still maintain a very high
success rate.
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structure and motion problems for toa and tdoa mea-
surements with collinearity constraints,” in Proceedings
of the 2nd International Conference on Pattern Recog-
nition Applications, 2013.
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