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ABSTRACT

This paper proposes a lossless compression method for
microarray images, based on a hierarchical organization of
the intensity levels followed by finite-context modeling. A
similar approach was recently applied to medical images with
success. The goal of this work was to further extend, adapt
and evaluate this approach to the special case of microarray
images. We performed simulations on seven different data
sets (total of 254 images). On average, the proposed method
attained ∼ 9% better results when compared to the best com-
pression standard (JPEG-LS).

Index Terms— Binary tree decomposition, microarray
images, lossless compression

1. INTRODUCTION

DNA microarray imaging is an important tool and a power-
ful technology for large-scale gene sequencing and gene ex-
pression analysis, allowing the study of gene function, regula-
tion and interaction across a large number of genes, and even
across entire genomes [1, 2]. DNA microarrays are currently
used, for example, for genome-wide monitoring in areas such
as cancer [3] and HIV research [4].

The output data obtained in a microarray experiment is
a pair of 16 bits per pixel grayscale images, one from the so-
called green channel and the other from the red channel. Gene
expression can vary in a very wide range, justifying the need
for image pixel intensities having a depth of 16 bits. Usu-
ally, these images also have a high spatial resolution, from
1000 × 1000 to 13800 × 4400 or even more, due to the mi-
croscopic size of the spots. Hence, these images may require
several tens of megabytes in order to be stored or transmit-
ted. Although the final goal is to extract from the microar-
ray images information related to expression levels, it is usu-
ally desirable to keep both the extracted genetic information
extracted and the original microarray experiments. For that

This work was partially supported by FEDER through the Operational
Program Competitiveness Factors - COMPETE and by National Funds
through FCT - Foundation for Science and Technology, in the context of a
PhD Grant (FCT reference SFRH/BD/86531/2012) and a project (FCT refer-
ence PEst-OE/EEI/UI0127/2014).

reason, the need for efficient long-term storage, sharing and
transmission of microarray images, is an important challenge.

2. SPECIALIZED METHODS

There are several compression techniques that have been pro-
posed for lossy and/or lossless compression of microarray im-
ages. In this work, we will be focused in lossless methods.
Recently, Hernandez-Cabronero et al. [5] reviewed the state
of the art in DNA microarray image compression. Therefore,
here, we will describe only those that we think are the most
representative.

Neves and Pinho [6] proposed a context-based lossless
method in 2006. Their method is a bitplane-based approach
that uses 3D finite-context models to drive the arithmetic en-
coder. In [7], they extended their method by adding a greedy
procedure to build the 3D context template, obtaining better
results than their previous method [6].

Neekabadi et al. [8] proposed a compression method
based on the separation of the original image into three cate-
gories: background, edge and spot pixels. The segmentation
is performed by finding a threshold value which minimizes
the weighted sum of the standard deviations of the foreground
and background pixels. This threshold value is used to create
the three subsets. The spot pixels are determined by eroding
the mask formed with pixels above the selected threshold.
The pixels surrounding the spot pixels are classified as edge
pixels. The background pixels are all the remaining. Each
subset is compressed using a separate predictor.

In 2009, Battiato and Rundo [9] proposed an approach
based on Cellular Neural Networks (CNNs). The first stage
of the algorithm consists on separating the original microar-
ray image into background and foreground (image spots). Af-
ter this first stage, the foreground is lossless compressed by
means of general purpose codecs (they used the standard PNG
codec based on LZ77 algorithm). The background is com-
pressed using an innovative method, based on palette rein-
dexing.



3. BINARY TREE DECOMPOSITION

Pinho and Neves proposed a lossless compression method
based on a hierarchical organization of the intensity lev-
els [10, 11]. Originally, the approach was intended to be
applied to images with a small number of intensities, usually
with 8 or less bits per pixel, due to a tight relation between
the processing time and the number of different intensities of
the image. In this work, we further extended this approach to
be able to handle images with a large number of intensities,
as is the case of microarray images. The goal here was to
find out if the compression results of microarray images can
be further improved using this approach, when compared to
the current state of the art methods. The proposed approach
has progressive decoding capability, which means that the de-
coding process can be stopped at any moment according to a
specific distortion metric, obtaining a partial image with some
loss. Furthermore, it is possible to obtain the original image
without any loss if the full decoding process is performed.

The organization of the intensity levels is attained by
means of a binary tree. Each node of the binary tree, n, rep-
resents a certain subset, Sn, of the intensities of the image.
The root node contains all active pixel values of the image
I = {I1, I2, . . . , IN}, where N represents the number of dif-
ferent intensities that occur in the image. Therefore, Sn ⊂ I
and S1 ≡ I. Each node possesses a representative intensity,
In, given by

In =

⌊
Inm + InM

2

⌋
, (1)

where Inm and InM are, respectively, the smallest and largest
pixel value in Sn, and where bxc denotes the largest integer
less than or equal to x. Computing the value of In according
to (1) leads to the smallest possible L∞ reconstruction error
when the intensities associated to node n (those in Sn) are all
substituted by In. The error is given by

εn∞ = InM − In. (2)

In Fig. 1, we can observe an example of a small bi-
nary tree of an image with only five active pixel values
{32, 50, 250, 33768, 65530}. The construction of this tree
begins with the association to the root node of the set of
intensities that occur in the original image. After this associ-
ation, it is necessary to compute I1 according to (1). In the
example depicted in Fig. 1, I1 = (32 + 65530)/2 = 32781
and ε1∞ = 65530 − 32781 = 32749, for the root node. The
next step consists in splitting the root node into two sub-
nodes and, therefore, splitting S1 into two subsets. In order
to split S1, we need only to compare the intensity I ∈ S1
with I1. The intensities lower than I1 are associated with the
left node, and the other ones with the right one. This proce-
dure is repeated until expanding all nodes, i.e., until having
a tree with N leaves (N is the number of active intensities
presented in the original image). The next node to expand
is chosen taking into consideration the smallest possible L∞

reconstruction error. In case of a tie, one is arbitrarily chosen,
although it is necessary that the decoder picks the same one.
In order to the decoder be able to build the same tree, it is
necessary to send the information of the active pixels values
to the decoder using a 65536-bit indicator. In order to encode
this indicator the encoder uses the following strategy. First,
the maximum intensity value IN , is sent. After that, a string
of In bits is transmitted, such that if the nth bit of the string
is one it means that the intensity n− 1 is present in the image
and zero otherwise.

After each node is expanded, two new nodes are created.
It it necessary to send to the decoder which pixels of the orig-
inal image will have an intensity changed to Inl and which
need to change to Inr , respectively the representative inten-
sities of the left and right newly created nodes. Since the
decoder has access to these intensity changes for all pixels,
it is enough to encode a binary mask, where a zero indicates
that the pixel needs to change its intensity to Inl and a one
indicates a change to Inr .
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Fig. 1. Example of a small binary tree that illustrates the hier-
archical organization of the intensity values.

The context was constructed using a template similar to
the one used in [11], where the context pixels are numbered
according to their distance to the pixel being encoded. A par-
ticular context is represented using a sequence of bits,

b1b2 . . . bk (3)

where

bi =

{
0, if |I(i)− Inl | ≤ |I(i)− Inr |
1, otherwise

and where I(i) denotes the intensity of the pixel in the current
reconstructed image corresponding to position i of the context
template.

This approach is interesting because it is not affected by
the reduced percentage of active pixel values that is a char-
acteristic in some microarray images (histogram sparseness).
However, even in this case, it is still necessary to send the
65536-bit indicator describing which intensities occur (or do
not occur). This overhead is constant for these kind of im-
ages (65536 bits), but the overhead percentage depends on
the number of pixels.



4. EXPERIMENTAL RESULTS

In this section, we present the experimental results obtained
using the approach described in Section 3. First, we de-
scribe the data sets used. After that, the compression results
using image compression standards (JBIG, JPEG-LS and
JPEG-2000), Gzip and Bzip2 are presented. The compres-
sion results using binary tree decomposition are shown in
Section 4.3.

4.1. Microarray image data sets

In recent literature, several microarray image data sets have
been used to report compression results. One of the hurdles
that often the researcher has to face is the lack of a reasonably
consensual data set with which the performance of the algo-
rithms can be measured. A few years ago, Pinho et al. [12]
used a benchmarking data set, composed of 49 publicly avail-
able microarray images from three different data sets, to eval-
uate the performance of the image compression standards. As
a result, this benchmarking data set has been used in most of
the works published after. However, it is natural that new
images, obtained using more recent technologies, need to be
added to the benchmarking data set. In this research, we used
four new data sets that were not used in [12] (see Table 1). Re-
garding the Omnibus data set, we decided to split it into two
sub-data sets: Low Mode (LM) images and High Mode (HM)
images. The LM and HM images are associated with the same
experiment but they were scanned using two different modes:
High or Low. The scanning mode affects the properties of the
obtained images mainly in terms of entropy and percentage of
active intensities (see Table 1 for more details).

In Table 1 we show the number of images, the approxi-
mate size of the images, the first order entropy, the average
percentage of active pixels of each data set, and also the Gini
Index (GI) [13]. The GI is a normalized sparsity measure that
can assume values between zero and one. Values close to zero
mean that the image has a lower sparsity. On the other hand,
values close to one mean that the image is very sparse.

4.2. Image compression standards

In 2006, Pinho et al. [12] evaluated the performance of
JBIG [14], JPEG-LS [15] and lossless JPEG2000 [16] in
microarray images. Here, we extend those results regarding
the additional data sets included in the benchmarking data
set and for the Gzip and Bzip2 compression methods (see
Table 2).

JBIG results were obtained using version 2.0 of the JBIG
Kit package1. The results for the JPEG-LS standard were
obtained using version 2.2 of the SPMG JPEG-LS codec,

1http://www.cl.cam.ac.uk/˜mgk25/jbigkit

with default parameters2. We used three implementations
of JPEG2000 in lossless mode. Version 5.1 of JJ2000 was
used with the default parameters3. The JasPer results were
computed using version 1.900.1 of the codec, with default
parameters4. Finally, the results for the Kakadu software
were collected using version 7.2 with default parameters, in
lossless mode5.

4.3. Results using binary tree decomposition

In what follows, we present the compression results attained
by the proposed method and also by the methods described
in [6, 7]. We did not include the compression results regard-
ing methods [8, 9] because we do not have access to the soft-
ware or source code to generate the results for the four new
data sets not used by them (Arizona, Omnibus, Stanford and
Yeast). We performed simulations on seven different data sets
(total of 254 images) described in Table 1. The results can be
found in Table 3. The second row of Table 3 corresponds
to the use of a search area of 256 × 256 pixels for context
creation, whereas the third row corresponds to a search area
comprising the complete image (designated as “Full” in the
Table). Regarding the proposed method, we present results
of two different approaches for context creation: “Greedy”,
and “Best”. The goal of each different context creation ap-
proaches is to find the context size by different ways, in order
to maximize the compression ratio. The “Greedy” approach,
as the name itself says, computes a locally optimal solution,
not necessarily the globally best solution. In this case, instead
of testing all possible sizes, we progressively test several sizes
until obtaining a bitrate worse than the previous “best”. The
“Best” solution is a slower version, where all possible sizes
are tested. Despite the time that it takes to compress, in this
case it is guaranteed that the best solution is always found.

After analyzing Table 3, we can conclude that the re-
sults, on average, are quite similar among both approaches
(“Greedy” and “Best”) of the proposed method. Further-
more, the “Best” version of the proposed method attained
∼ 9% better results when compared to the best compression
standard (JPEG-LS). On the other hand, the “Full” version
of method [7] attained ∼ 8% better results when compared
to the best compression standard (JPEG-LS). Furthermore,
we can notice in the second row of Table 3, the poor results
obtained in method [7], when compared to method [6]. The
reason for those low results (higher number of bits per pixel),
is due to the naive implemented search area positioning. By
default, method [7] set the search area in the center of the

2The original web-site of this codec, http://spmg.ece.ubc.ca, is
currently unavailable. However, it can be obtained from http://sweet.
ua.pt/luismatos/codecs/jpeg_ls_v2.2.tar.gz

3The original web-site of this codec, http://jj2000.epfl.ch, is
currently unavailable. Nevertheless, this codec can be obtained from http:
//sweet.ua.pt/luismatos/codecs/jj2000_5.1-src.zip

4http://www.ece.uvic.ca/˜frodo/jasper
5http://www.kakadusoftware.com



Approximate Average Average
Data set Year Images size entropy intensity usage Gini Index (GI)

(cols × rows) (bits per pixel) (percentage)
Apo AI 2001 32 > 1044× 1041 11.038 39.507 0.494
Arizona 2011 6 = 13800× 4400 9.306 82.821 0.774
ISREC 2001 14 = 1000× 1000 10.435 33.345 0.710
Microzip 2004 3 > 1800× 1900 9.422 36.906 0.556
Omnibus (Low Mode) 2006 25 = 12200× 4320 5.713 50.130 0.726
Omnibus (High Mode) 2006 25 = 12200× 4320 7.906 98.076 0.892
Stanford 2001 40 > 1900× 2000 8.306 27.515 0.615
Yeast 1998 109 = 1024× 1024 6.614 5.391 0.518

Table 1. Microarray image data sets used in this work. The number of images represents the total number of images that each
data set contains (each image corresponds to one channel).

Algorithm Apo AI Arizona ISREC MicroZip Omnibus (LM) Omnibus (HM) Stanford Yeast Average
Gzip 12.711 11.263 12.464 11.434 7.124 9.558 9.972 7.672 8.813
Bzip2 11.068 9.040 10.922 9.394 5.346 7.523 7.961 6.075 6.880
JBIG 10.851 8.896 10.925 9.298 5.130 7.198 7.906 6.888 6.676
JPEG-LS 10.608 8.676 11.145 8.974 4.936 6.952 7.684 8.580 6.521
JJ2000 11.063 9.107 11.366 9.515 5.340 7.587 8.060 9.079 7.020
JasPer 11.002 9.064 11.314 9.467 5.312 7.549 8.019 9.030 6.985
Kakadu 11.063 9.064 11.314 9.467 5.312 7.549 8.018 9.029 6.985

Table 2. Lossless compression results, in bits per pixel (bpp), using Gzip, Bzip2, JBIG, JPEG-LS and three implementations of
JPEG2000: JJ2000, JasPer and Kakadu. Default compression parameters have been used for all algorithms. The best results
are highlighted in bold.

microarrays image. However, it is possible that in the center
of the microarray image the search area does not contain any
spots (background region) thus, the context obtained is not
optimal. In this case, the images of the Omnibus data set had
four spot regions and the default search area positioning sets
the search area in a background zone without spots.

Table 4 depicts the average number of pixels per millisec-
ond that are processed during encoding (left values) and de-
coding (right values). Instead of using all images, we se-
lected four representative images from each data set to com-
pute these results. As expected, the method [6] is the fastest
one due to its static precomputed context configuration. The
other methods rely on a context creation that depends on the
image. This context creation takes a considerable amount of
time, depending on the approach used. The proposed method
is based on a hierarchical organization of the intensity lev-
els of the image. For that reason, the performance in terms
of encoding/decoding time is dependent on the percent of ac-
tive intensities (see column 6 of Table 1). For the Yeast data
set, the results obtained by our method are quite similar to
those of methods [6,7]. For the other data sets, the processing
times are worse mainly in the decoding phase. We conclude
that despite the fact a microarray image has a lower percent
of active intensities, the entropy and GI values can affect the
performance of the proposed method. It is also easy to con-
clude that the methods based on bitplane decomposition (such

as methods [6] and [7]), are not affected in terms of encod-
ing/decoding time by the percent of active intensities.

5. CONCLUSIONS

We presented a lossless compression method for microarray
images based on binary tree decomposition. We used a to-
tal of 254 images from seven different data sets. Because
these seven microarray image data sets are different in terms
of size (number of pixels), number of images, entropy, per-
centage of active pixels and sparseness, the results obtained
are quite different for each data set. The proposed method
attained an average of ∼ 9% better results when compared to
the best compression standard (JPEG-LS). In terms of com-
pression ratio, it is slightly better than the “Best” version of
method [7], which, on average, attained ∼ 8% better results
when compared to JPEG-LS.

The proposed method has progressive decoding capabil-
ity, which is in fact a very useful characteristic that the ma-
jority of microarray compression methods do not have. Not
only we can stop the decoding process at any instant (getting
an image with some loss) according to a defined metric, but
also we can obtain the original image without any loss.



Algorithm Apo AI Arizona ISREC MicroZip Omnibus (LM) Omnibus (HM) Stanford Yeast Average
Neves [6] 10.280 8.394 10.217 8.840 5.309 7.047 7.664 5.610 6.561
Neves [7] (256× 256) 10.225 8.293 10.199 8.667 5.679 7.744 7.468 5.511 6.948
Neves [7] (Full) 10.194 8.242 10.159 8.619 4.567 6.471 7.379 5.453 6.006
Proposed (Greedy) 10.199 8.186 10.200 8.593 4.540 6.401 7.306 5.323 5.957
Proposed (Best) 10.194 8.186 10.198 8.592 4.539 6.400 7.303 5.318 5.956

Table 3. Lossless compression results in bits per pixel (bpp) obtained using the methods described in [6, 7] and the proposed
method based on binary tree decomposition. The “Greedy” and “Best” versions are related to two different approaches for
context adaptation (additional details in the main text).

Algorithm Apo AI Arizona ISREC MicroZip Omnibus (LM) Omnibus (HM) Stanford Yeast Average
Neves [6] 103 | 104 234 | 301 76 | 82 198 | 237 250 | 313 231 | 294 175 | 210 77 | 82 221 | 277
Neves [7] (256× 256) 36 | 227 163 | 213 35 | 238 108 | 220 279 | 366 259 | 360 97 | 230 27 | 215 164 | 258
Neves [7] (Full) 3 | 197 2 | 171 3 | 213 2 | 180 1 | 168 1 | 162 2 | 190 2 | 194 2 | 170
Proposed (Greedy) 2 | 11 6 | 40 6 | 24 2 | 64 11 | 29 7 | 31 5 | 47 20 | 186 6 | 35
Proposed (Best) 1 | 11 2 | 41 2 | 26 2 | 65 5 | 30 2 | 31 2 | 45 8 | 185 2 | 36

Table 4. Simulation results in pixels per millisecond. The values in the left correspond to encoding, whereas the right-hand ones
correspond to decoding. The results were obtained dividing the total number of pixels by the total number of milliseconds used
in the encoding/decoding process. Higher values are better.
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