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ABSTRACT

This paper presents an efficient approach for multiscale key-

point detection based on triangular biorthogonal wavelets.

The detection scheme is simple and thus fast as only three

isotropic directional components of an image obtained by

multiscale decomposition with the triangular biorthogonal

wavelets are used for keypoint localization at each scale.

Redundant lifting is also considered and can be applied di-

rectly to calculate cumulative local energy distribution that

is derived from the correction of the three directional com-

ponents at each scale. This gives the efficient and accurate

localization of keypoints including scale information. An ex-

perimental result shows that our method is better in the sense

of the uniform distribution of keypoints compared with the

conventional wavelet-based approach.

Index Terms— Keypoint, discrete wavelet transform, tri-

angular lattice, lifting, redundant transform

1. INTRODUCTION

Local features of an image are often represented as edges,

corners, keypoints, and so on. Among them, keypoints are

widely used in the field of computer vision for the purpose of

object recognition, content-based image retrieval, and image

classification. While various techniques are used for keypoint

detection, one notable method uses the scale-invariant feature

transform (SIFT) [1] because it can describe multiscale key-

points that are robust to scale and rotation. This is different to

the classical Harris corner detector [2], which detects corners

as local features of an image. However, SIFT is highly com-

putationally expensive because it computes the difference of

Gaussian (DoG) at each scale to detect scale-invariant key-

points. It also needs to separate keypoints from edges.

This study focuses on wavelet-based approaches for mul-

tiscale keypoint analysis. Loupias et al. [3] proposed a fast

salient points extraction method using the fast Mallat algo-

rithm for multiscale signal decomposition with the discrete

wavelet transform (DWT). However, the DWT is not shift-

invariant and has a lack of directional selectivity. To account

for this drawback, the dual-tree complex wavelet transform

(DTCWT) has been successfully applied to multiscale key-

point detection [4]. It is directionally selective and approx-

imately shift-invariant. However, this method uses complex

bases, the constructions of the associated filters are highly in-

volved, and it is computationally complex.

More recently, triangular wavelets that belong to a new

class of two-dimensional wavelets defined on a regular trian-

gular lattice have been proposed [5, 6]. They are easy to use

because they are constructed using a straightforward gener-

alization of one-dimensional wavelets. This means that they

inherit several nice features of classical wavelets such as the

systematic construction of filters and fast multiscale signal de-

composition. They also maintain isotropy of an image, allow-

ing isotropic image processing, as in the DTCWT. In addi-

tion, all of the associated filter coefficients are real and the

filter construction is not computationally complex, which al-

lows fast multiscale keypoint detection. Thus, we consider

that these particular properties of the triangular wavelets are

well suitable for keypoint analysis.

In this paper, we propose an efficient method for uni-

form keypoint detection based on triangular biorthogonal

wavelets. We also apply a redundant lifting approach to con-

struct wavelet filters that can be used directly in our keypoint

detection scheme. The proposed methods provide an efficient

and accurate localization of keypoints with scale informa-

tion, which uniformly represent the main characteristics of an

image unlike the conventional wavelet-based approach.

The remainder of this paper is organized as follows. In

Section 2, we give an overview of the construction of trian-

gular biorthogonal wavelets. Section 3 introduces the method

for multiscale keypoint detection using triangular biorthogo-

nal wavelets, implemented using redundant lifting. We show

the results of the keypoint detection using some images with a

comparison in Section 3. Finally, Section 4 gives conclusions.



2. TRIANGULAR BIORTHOGONAL WAVELETS
USING LIFTING

Triangular wavelets are defined on a triangular lattice Λ, gen-

erated using a linear combination of two vectors t1 = (1 0)T

and t2 = (−1
2

√
3

2 )T . The reciprocal lattice Λ̃ that corre-

sponds to the Fourier domain is similarly generated with vec-

tors λ1 = (0 2√
3
)T and λ2 = (1 1√

3
)T . For notational

convenience, we also define t0 = 0, t3 = −t1 − t2, and

λ3 = λ1 − λ2.

The polyphase representation of a two-dimensional dis-

crete signal, cj [t], t ∈ Λ, defined on the lattice that has a

resolution level j ∈ Z and j ≥ 0, is written by

ĉj(ω) =
3∑

m=0

e−iω·tm ĉm,j(2ω),

where

ĉm,j(ω) =
∑
t∈Λ

cj [2t + tm]e−iω·t, m = 0, 1, 2, 3.

This means that we have four polyphase components ĉm,j(ω),
implying that we have one even component, cj [2t], and three

odd components, cj [2t + tm],m = 1, 2, 3. Note that in

one dimension there only exist even cj [2k], k ∈ Z and odd

cj [2k + 1] components.

Following a straightforward generalization of the DWT, a

signal cj [t] is decomposed into a coarse component cj+1[t]
and three detail components dk,j+1[t], k = 1, 2, 3, of half

resolution. This can be written using the lifting form [7] gen-

eralized to the two dimensional lattice. Three detail compo-

nents are obtained using three predictors pk, k = 1, 2, 3, that

is,

dk,j+1[t] = cj [2t + tk]− pk(cj [2t]), k = 1, 2, 3. (1)

A coarse component is derived using the results of the predic-

tion with updater uk, k = 1, 2, 3,

cj+1[t] = cj [2t] +
3∑

k=1

uk(dk,j+1[t]). (2)

This preserves the average of a two-dimensional signal. Fi-

nally, the normalization steps are applied to normalize the L1

norm. The triangular DWT that repeats the predict (1) and

update (2) steps up to a resolution level L > j produces the

multiscale coefficients

cj [t]→ {dk,j+1[t], dk,j+2[t], . . . , dk,L[t], cL[t]},
k = 1, 2, 3.

(3)

Different choices of p and u give an arbitrary set of

biorthogonal wavelet filters. For example, the simplest choice

p̂k(ω) = 1, ûk(ω) = 1/4, k = 1, 2, 3, (4)
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Fig. 1. Frequency responses of triangular biorthogonal Haar

wavelet filters (h, gk). (a): ĥ. (b):ĝ1. (c): ĝ2. (d): ĝ3. The

arrows indicate 2π times vectors λk, k = 1, 2, 3.

gives a system of triangular biorthogonal Haar filters that con-

sists of a low-pass (LP) filter h[t] and three high-pass (HP)

filters gk[t], and their duals h̃[t] and g̃k[t]. Note that we have

three independent primal HP filters ĝk and dual HP filters ˆ̃gk,

because we have three predictors pk. As in (4), if we set the

same predictors for the three prediction steps in (1), the result-

ing filters become isotropic. This means that the HP filters ĝk

and ˆ̃gk have directional responses to the tk directions on the

reciprocal lattice. Thus, each HP filter is symmetrically de-

fined by rotating it by ±2π/3 on the lattice (see Fig. 1).

3. MULTISCALE KEYPOINT DETECTION

The triangular DWT (3) produces three detail components

(dk,j [t], k = 1, 2, 3) which contain directional information

for each scale. While the DTCWT decomposes a signal into

six orientations of subbands in the frequency domain, each

dk,j [t] reveals the edge structure of an image in the directions

towards 0◦, 120◦, and 240◦, because the three HP filters are

designed to be isotropic. In fact, these three directions are

very efficient when analyzing the directional components of a

signal, because they form a hexagon that is the most symmet-

ric polygon that can fill up a two-dimensional plane R
2.

To extract the keypoints from the detail components, the

local energy distribution is defined by

d̃j [t] = αj
3∏

k=1

|dk,j [t]|2 , (5)

which represents the unique points of images where the three

edges of the detail components intersect at each scale. The



parameter α adjusts a magnitude scale of d̃j [t], which distin-

guishes the features of an image from other components such

as noise. Note that dj,k[t] is assumed to be smoothed by the

Gaussian filter, which means that we can more easily detect

its peaks and reduce the influence of noise.

3.1. Redundant lifting

The local energy distribution d̃j [t] at each scale level j pro-

duced by the standard lifting has the different location that

depends on j. Therefore, we introduce redundant lifting

to obtain the same index (t) for each scale of the local en-

ergy distribution d̃j [t], which allows to directly combine the

d̃j [t] of each scale. The previously described lifting uses the

polyphase decomposition, which classifies a signal cj [t] into

one even cj [2t] and three odd components cj [2t + tk]. As

a result, each polyphase component has half the resolution

of the original signal. The redundant lifting does not use the

polyphase decomposition or decimation.

In the case of the Haar filter, which uses constant predic-

tions p̂k(ω) = 1 and updates ûk(ω) = 1/4, the steps can be

rewritten as

dk,j+1[t] = cj [t + 2jtk]− cj [t], k = 1, 2, 3, (6)

and

cj+1[t] = cj [t] +
3∑

k=1

dk,j+1[t]
4

, (7)

where j starts from 0. A similar setting to the one for cj [k +
2j ] can also be seen in the à trous algorithm [9], which real-

izes the undecimated Mallat transform. Therefore, the redun-

dant lilting described here is different from that of [8], which

applies the prediction and update steps twice to implement

the redundant transform. Unlike the standard prediction, the

redundant lifting maintains the resolution of the decomposed

signals.

Here we describe how redundant lifting decomposes a sig-

nal. Before applying the decomposition, we use the simple

half-shift pixel method [10] to generate a triangular lattice

from a square sample of image data. For each odd line on

a square lattice, we first find the midpoint between two adja-

cent pixels using linear interpolation. Then, we discard the

left and right, keeping only the mid values. As a result, we

obtain a hexagonally sampled triangular lattice. We use re-

dundant lifting to decompose the original image into a coarse

approximation cj+1[t], and three oriented detail components,

dk,j+1[t], k = 1, 2, 3, at each resolution level. Note that they

have the same resolution density.

3.2. Cumulative local energy distribution

The locations of the local energy distribution at each scale j
are maintained, because the dk,j+1[t] obtained by the redun-

dant lifting decomposition has exactly the same index space.

(a)

(b)

Fig. 2. (a) Cumulative local energy distribution. (b) 40 key-

points.

To add scale information to the local energy distribution, we

define a cumulative local energy distribution as

P [t] =
L∑

j=1

d̃j [t]. (8)

The multiscale keypoints are obtained by simply detecting the

local maxima in the cumulative local energy distribution P [t],
and their locations are the same as the indices t because of the

redundant lifting.

Fig. 2(a) shows the cumulative local energy distribution

P [t] of the cameraman image, and Fig. 2(b) shows the result

of the keypoint detection where 40 keypoints were detected

using the cumulative local energy distribution. The distribu-

tion is smooth because of the Gaussian filtering, and thus the

keypoints of neighboring local features do not overlap. In

Fig. 2(b), each circle on the image represents the scale of the

keypoints, which corresponds to the value of the local max-

ima of P [t]. As we intended, all the keypoints represent dis-

tinguishing local features of the image such as corners and

junctions. This implies that three symmetric edge features

extracted using triangular biorthogonal wavelets accurately

represent the local characteristics of an image, and the scale

information of the keypoints provide its global property.
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Fig. 3. Results of the keypoint detection with P = 64 (top)

and P = 100 (bottom). Left column shows the case of

the triangular wavelet; right column shows the conventional

wavelet. Each entropy E is given by (a) 95.6%, (b) 82.0%,

(c) 91.6% and (d) 88.4%, respectively.

3.3. Uniform detection of keypoints

Here we evaluate the performance of the proposed method

when compared with the conventional discrete wavelet-based

approach [3]. Because our triangular wavelet filters maintain

the isotropy of images, we expect that the keypoints will be

uniformly detected if an image is isotropic. To measure the

uniformity of the distribution of keypoints, we divided the

image into N blocks. We then calculated the entropy in each

k-th block using

E =

−
N∑

k=1

p[k] log(p[k])

log(N)
. (9)

This represents the occurrence rate of p keypoints existing in

each block k, when an image is divided into N equal blocks

[3]. A larger E indicates that the keypoints are more uni-

formly distributed.

Fig. 3 shows the results of the keypoint detection for two

images containing nearly isotropic edges, and their entropies

when P = N = 64 and P = N = 100. These results demon-

strate the advantage of our method when compared with the

conventional technique. When using triangular wavelets, the

keypoints are more uniformly distributed, and consequently

the entropy is higher. This is because the triangular wavelets

uniformly decompose an image and preserve its isotropy.

4. CONCLUDING REMARKS

We proposed a method for multiscale keypoint detection

based on triangular biorthogonal wavelets. Our method uses

the cumulative local energy distribution of three isotropic

detail components obtained from redundant lifting on the

triangular lattice to detect the distinctive local features of

an image and their locations. The extracted keypoints in-

clude scale information that represents the local and global

characteristics of an image.

The proposed method is efficient and accurate, because

it only uses three symmetric edge components for detecting

keypoints. Additionally, it produces a more uniform distri-

bution of keypoints when compared with the conventional

wavelet-based approach due to the isotropic signal decompo-

sition. The keypoint descriptor should be developed in future

work, and further comparisons of the performance when com-

pared with recently developed methods are necessary.
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