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ABSTRACT

In array signal processing, distances between receivers, e.g.,
microphones, cause time delays depending on the direction
of arrival (DOA) of a signal source. We can then estimate
the DOA from the time-difference of arrival (TDOA) esti-
mates. However, many conventional DOA estimators based
on TDOA estimates are not optimal in colored noise. In this
paper, we estimate the DOA of a harmonic signal source from
multi-channel phase estimates, which relate to narrowband
TDOA estimates. More specifically, we design filters to ap-
ply on phase estimates to obtain a DOA estimate with mini-
mum variance. Using a linear array and harmonic constraints,
we design optimal filters based on estimated noise statistics.
Therefore, the proposed method is robust against different
noise scenarios. In colored noise, simulation results confirm
that the proposed method outperforms an optimal state-of-
the-art weighted least-squares (WLS) DOA estimator.

Index Terms— Audio signal, harmonic model, direction
of arrival (DOA), time-difference of arrival (TDOA).

1. INTRODUCTION

Microphone array technology has emerged as a tool to im-
prove audio communication systems such as teleconferencing
and hearing aids. Acoustic source localization can be used
in audio signal source separation, enhancement, and speech
analysis and recognition [1, 2]. It also appears in some mi-
crophone array filter designs, e.g., the minimum variance
distortionless response (MVDR) beamformer [3] is designed
to pass a signal of interest from the known direction of arrival
(DOA). Ambient noise in the received signals often causes
ambiguities in source localization. Thus, estimating the DOA
of an audio source is a challenging problem. In general, DOA
estimation methods can be categorized in three groups [4]:
• The time-difference of arrival (TDOA) based estimators
that scale the TDOA of successive microphones, e.g., the
phase shift [5] and the cross-correlation [6, 7] methods.
• The beamforming based methods that steer the array in a
range of possible directions at each frequency bin, and max-
imize the output power versus the DOA [8], e.g., the steered
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response power (SRP) method [9].
• The high-resolution DOA estimators based upon spa-
tiospectral correlation matrix estimates, e.g., the MUSIC [10]
and ESPRIT [11] methods utilizing the eigenvalue decompo-
sition, and the NLS based method [12].
In terms of computational complexity, the TDOA based es-
timators possess an advantage over the two other methods
in real-time systems [4]. Therefore, we here focus on the
TDOA based estimators for audio signals with emphasis on
the harmonic structure.

The broadband TDOA estimation method has been pro-
posed in [5] based on the least squares (LS) estimator from the
phase of the cross power spectrum. Conventional TDOA esti-
mators are designed assuming a single-source [4,5,13]. How-
ever, the harmonic characteristic of audio signals facilitates
a remarkable ability to estimate TDOAs of multiple sources
which have different fundamental frequencies. The weighted
least-squares (WLS) method has been proposed to estimate
the DOA from the TDOA estimates of a harmonic signal [14]
using the mutual coupling of the phase estimates of the har-
monics. Although the WLS DOA estimator [14] attains the
Cramér-Rao bound (CRB) in white noise, and outperforms
SRP [9] and position-pitch plane based (POPI) [15] methods,
the weighting matrices of the WLS method are given by the
corresponding Fisher information matrices (FIMs) with the
assumption of white Gaussian noise [14].

In this paper, we consider a novel TDOA based approach
robust against different noise scenarios. We apply the idea of
using the linear relationship between the unwrapped phase es-
timates across microphones, i.e., the phase shift, and then esti-
mate the DOA from these phase shifts of the harmonics. Since
an additive Gaussian noise should be equivalent to an additive
phase noise for a high signal-to-noise ratio (SNR) [16], we
can filter the phase estimates as the solution to minimize the
variance of the phase shifts. We design the minimum variance
distortionless response (MVDR) filter using the noise vari-
ance estimates from the statistics of the multi-channel phase
estimates. We also apply this filtering method on the phase
shift estimates of harmonics to estimate the DOA. As a re-
sult, the proposed method performs well for different noise
scenarios, e.g., in colored noise, since we estimate the noise
variance across microphones and harmonics.

The remainder of the present paper is organized as fol-



lows. In the next section, i.e., Section 2, the multi-channel
signal model is formulated. Then, we present the DOA esti-
mation method from multi-channel phase estimates in Section
3. Later on, in Section 4, experimental results are reported. In
closing, the work is concluded in Section 5.

2. SIGNAL MODEL

2.1. Spatial sampling of a harmonic signal

We model a harmonic signal s(n) at the time instance n as
the sum of L sinusoids with a fundamental frequency ω0 ∈
(0, π], harmonics with frequencies being integer multiples of
the fundamental frequency, the real magnitudes αl > 0, and
phases ϕl ∈ (−π, π] for l = 1, 2, . . . , L:

s(n) =

L∑
l=1

αl e
j (lω0 n+ϕl), (1)

where j =
√
−1. The complex signal model can be applied to

real signals through the Hilbert transform. We assume a mi-
crophone array with a set of M omnidirectional microphones
that receives a plane wave from the far field, with a DOA
θ ∈ [−π/2, π/2]. We write the clean multi-channel received
signal x(n) = [x1(n), x2(n), . . . , xM (n) ]T as a function of
the steering vector dθ(lω0) = d(θ, lω0) and the magnitude
attenuation of β = diag{[β1, β2, . . . , βM ]} at each micro-
phone in an anechoic environment, i.e.,

x(n) =

L∑
l=1

αl e
j (lω0 n+ϕl) β dθ(lω0), (2)

where the superscript T is the transpose operator, and diag{·}
denotes a diagonal matrix formed from its vector argument.
While different array structures can be considered, we assume
a uniform linear array (ULA) structure herein for the proof of
our concept with the particular steering vector

dθ(ω) = [ 1, e−jωfsτ0 sin(θ), · · · , e−j(M−1)ωfsτ0 sin(θ)]T, (3)

where ω ∈ [0, π], fs is the sampling frequency, τ0 = δ/c is
the delay between two successive sensors with the distance of
δ, and c is the speed of sound.

2.2. Phase noise

We assume that the observed signals are contaminated by
Gaussian noise v(n) = [ v1(n), v2(n), . . . , vM (n) ]T ∈ CM
in the complex form with zero-mean values, i.e.,

y(n) = x(n) + v(n). (4)

The independent noise across theM microphones, i.e., vm(n)
for m = 1, 2, . . . ,M , have the real and imaginary uncorre-
lated parts with the variance of σ2

m/2. At a high narrowband
SNR, for the lth harmonic, i.e., SNRlm = (βmαl)

2/σ2
m � 1,

the additive noise can be converted into an equivalent phase
noise ∆ϕm(lω0), and this normally distributed random
noise has zero-mean and a variance of E{[∆ϕm(lω0)]2} =
1/(2 SNRlm) [16], where E{·} denotes the statistical expec-
tation. Therefore, besides the phases of the harmonics and
phase shifts due to the TDOAs, we define a vector containing
phase noise as

∆Φl = [ ∆ϕ1(lω0), ∆ϕ2(lω0), . . . , ∆ϕM (lω0) ]T , (5)

and we can approximate the noisy signal model in (4) like:

y(n) ≈
L∑
l=1

αl e
j (lω0 n+ϕl) Dv(lω0)β dθ(lω0), (6)

where Dv(lω0) = diag{exp(j∆Φl)}. For the spatially un-
correlated phase noise, i.e., E{∆ϕi(lω0)∆ϕk(lω0)} = 0 for
i 6= k, the covariance matrix of the phase noise vector at the
lth harmonic, i.e., R∆Φl

= E{∆Φl ∆ΦT
l }, can be shown to

be

R∆Φl
= diag

{[ 1

2 SNRl1
,

1

2 SNRl2
, . . . ,

1

2 SNRlM

]}
. (7)

3. PROPOSED METHOD

Using the model of a harmonic signal and the phase proper-
ties of the spatial samples y(n), we can estimate the source
DOA from spatiotemporal signals Y(n) = [ y(n),y(n +
1), . . . ,y(n + N − 1) ] ∈ CM×N . First, we estimate the
phase shifts of each harmonic across the microphones, which
are related to the TDOAs of narrowband signals, and then es-
timate the DOA from the collection of phase shift estimates,
inspired by [14]. To achieve an optimal solution from the
noisy estimates, we estimate both phase shifts and DOA se-
quentially with minimum variance, based on the assumption
that the fundamental frequency and also the number of har-
monic components are given, e.g., by using a multi-channel
pitch estimation [12, 17, 18] along with multi-channel model
order estimation [19].

3.1. Phase shift estimate

Following the harmonic signal model (2), the phase of the lth
harmonic in the mth channel of a ULA is

Φl,m = ϕl − (m− 1)lω0fsτ0 sin(θ). (8)

We write the collection ofM phases for the lth harmonic, i.e.,
Φl = [ Φl,1,Φl,2, . . . ,Φl,M ]T , as a linear combination of the
signal phase ϕl and the phase shift ψl as

Φl =
[
1M , (ΓM − 1M )

] [ ϕl
−lω0fsτ0 sin(θ)

]
= ΠM

[
ϕl
ψl

]
, (9)



where 1M is the all-ones column vector of length M , and
ΓM = [ 1, 2, . . . ,M ]T . The matrix ΠM = [ 1M , (ΓM −
1M ) ] ∈ RM×2 is defined based upon the number of micro-
phones and the linear relationship between the TDOAs of a
ULA. This can be generalized to other arrays.

Following the approximated signal model in (6), the
phase estimates Φ̂l, which are estimated from ym(n) =
[ ym(n), ym(n+ 1), . . . , ym(n+N −1) ] for m = 1, . . . ,M ,
can be written like

Φ̂l = Φl + ∆Φl, (10)

where ∆Φl is the phase noise vector. The covariance matrix
of ∆Φl, which describes the spatial properties of noise statis-
tics, is defined like

R∆Φl
= E{(Φ̂l − E{Φ̂l}) (Φ̂l − E{Φ̂l})T }. (11)

Although the consecutive M phases lie on a continuous line,
which are originated from the first microphone with a zero
phase shift, the phase estimates are wrapped in (−π, π].
Therefore, we have to unwrap these phase estimates, e.g.,
using the unwrapping algorithm in [20].

We apply a filter W ∈ RM×2 to estimate the parameter
vector [ϕl, ψl ]

T like[
ϕ̂l
ψ̂l

]
= WT Φ̂l = WTΠM

[
ϕl
ψl

]
+ WT∆Φl, (12)

with the constraint that WTΠM = I2×2, where I2×2 is an
identity matrix of size 2. The mean square error (MSE) of an
unbiased estimator is given by

MSE

{[
ϕ̂l
ψ̂l

]}
= tr

{
WTR∆Φl

W
}
, (13)

where tr{·} denotes the trace of a square matrix. Later on,
to approach a minimum variance of the parameter vector esti-
mator in (12), the minimum variance distortionless response
(MVDR) method is derived by

min
W

tr
{
WTR∆Φl

W
}

(14)

subject to WTΠM = I2×2.

Using the method of Lagrange multipliers, the optimal filter
WMVDR is given by

WMVDR = R−1
∆Φl

ΠM (ΠT
M R−1

∆Φl
ΠM )−1. (15)

3.2. DOA estimate

While the DOA of the lth harmonic can be obtained from the
phase shift estimate ψ̂l, i.e., θ̂l = sin−1(ψ̂l / lω0fsτ0), the
DOA of the harmonic source can be estimated from the L
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Fig. 1. MSE of DOA estimates of a harmonic signal versus
SNR levels of colored noise.

estimates with minimum variance, where all the phase shifts
Ψ = [ψ1, ψ2, . . . , ψL ]T are modeled like

Ψ = ω0fsτ0 sin(θ) ΓL. (16)

We can show that the phase shift estimates are also approxi-
mately distorted by Gaussian noise ∆Ψ = [ ∆ψ1, ∆ψ2, . . . ,
∆ψL ]T like

Ψ̂ = Ψ + ∆Ψ. (17)

The covariance matrix of ∆Ψ which describes spectral prop-
erties of noise is defined like

R∆Ψ = E{∆Ψ∆ΨT }
= E{(Ψ̂− E{Ψ̂}) (Ψ̂− E{Ψ̂})T }. (18)

Herein, we apply a filter h ∈ RL to estimate the sinusoidal
function of the DOA from the phase shift estimates like

sin(θ̂) = hT Ψ̂ = ω0fsτ0 sin(θ) hTΓL + hT∆Ψ. (19)

With the distortionless constraint that hTΓL = 1/ω0fsτ0, the
MSE of an unbiased estimator is given by MSE{sin(θ̂)} =
hTR∆Ψh. To approach a minimum MSE estimator, the op-
timal filter is given as the solution to the following problem:

min
h

hTR∆Ψh (20)

subject to hTΓL = 1/ω0fsτ0.

Subsequently, the optimal filter hMVDR is found like

hMVDR =
1

ωfsτ0
R−1

∆Ψ ΓL (ΓTL R−1
∆Ψ ΓL)−1, (21)

and the optimal DOA can be estimated with a minimum vari-
ance like

θ̂ = sin−1(hTMVDRΨ̂). (22)
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Fig. 2. MSE of DOA estimates of a harmonic signal, contam-
inated by colored noise in SNR = 20 dB, versus number of
microphones.

4. SIMULATION RESULTS

We evaluate the performance of the proposed filtering method
for estimating the DOA of a complex harmonic signal in an
anechoic environment. We compare the MSE of the proposed
method in 200 Monte-Carlo simulations with the broadband
MVDR beamforming method with harmonic emphasis (BH-
MVDR) [18] and the WLS DOA estimator in [14]. We inves-
tigate the performance of the proposed method in different
situations, i.e., SNR levels, and the number of microphones
and harmonics are varied.

In the experiments, we assume that we know the funda-
mental frequency and number of harmonics, and then esti-
mate the phases of multi-channel signals individually using
the least-squares (LS) method, because the results of the LS
method are asymptotically efficient in colored noise with a
large number of samples [21]. With a high enough number
B of phase estimates, which are assumed stationary, the time
averaging should converge to the statistical expectation, i.e.,

E{Φ̂l} =
1

B

B−1∑
b=0

Φ̂l(b)− blω01M , (23)

E{Ψ̂} =
1

B

B−1∑
b=0

Ψ̂(b), (24)

where Φ̂l(b) are estimated from y(b), and Ψ̂(b) is the sec-
ond vector element of WT

MVDR[ Φ̂l(b) − blω01M ] for l =
1, 2, . . . , L. Then, we also estimate the asymptotic covariance
matrices in (11) and (18) by time averaging. These matrices
can be guaranteed to be full rank in the two filter designs (15)
and (21) by choosing B ≥ max(M,L).

We use a ULA with M = 10 omnidirectional micro-
phones that δ = 0.04 m, fs = 8.0 kHz, c = 343.2 m/s
at 20◦C, and add colored Gaussian noise which is gen-
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Fig. 3. MSE of DOA estimates of a harmonic signal, contam-
inated by colored noise in SNR = 30 dB, versus number of
harmonics.

erated by passing a complex white Gaussian noise with
zero-mean through an autoregressive (AR) filter given by
1/(1 − 1.3z−1 + 0.4z−2) in Z-transform. In all simulations,
we place a synthetic signal at θ = π/6, where ω0 = 0.06π
and L = 10 with uniform random distributed phases ϕl, iden-
tical magnitudes αl = 1, and the magnitude attenuation β =
diag

{
[ 0.25, 0.5, 1.0, 0.67, 0.33, 0.5, 0.67, 1.0, 0.34, 0.4, 0.5,

0.67, 1.0, 2.0 ]
}

for a maximum number of 14 microphones.
Then, we estimate B = 100 numbers of the phases of each
channel individually from N = 128 samples.

At different SNR levels of the colored noise, Figure 1
shows that the proposed MVDR filtering method outperforms
both the WLS and BH-MVDR methods for SNR > 5 dB.
In 20 dB of SNR, Figure 2 shows that the MVDR filtering
method outperforms the WLS method and the BH-MVDR
method for M ≥ 8. In Figure 3, we also see that the DOA
estimates of a signal with a high number of harmonics will
be more robust than lower numbers. Moreover, the proposed
method outperforms the WLS DOA estimator, using M = 10
in SNR = 30 dB. In general, the results of all experiments
confirm that the DOA estimates between all harmonics has
significantly lower uncertainty than the DOA estimate of the
first harmonic, i.e., θ̂1.

5. CONCLUSION

We have shown that an additive Gaussian noise can cause a
Gaussian phase noise on multi-channel signals, and proposed
a DOA estimation method emphasizing the harmonic signal
model. We applied a filtering method on multi-channel phase
estimates to approach optimal results by estimating spatial
and spectral noise statistics. We have shown that the pro-
posed method outperforms the WLS DOA estimator in col-
ored noise, which is an optimal solution in white Gaussian
noise outperforming some state-of-the-art methods [14].
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