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ABSTRACT
In this paper we introduce two concepts: second order vector
fields that describe line-like objects in images and rotation-
invariant Complex Matched Filter kernels that can be used
to detect object with almost any complexity. We present the
theoretical grounds for kernel derivation, object matching us-
ing sets of subresponses, object’s rotation angle and active
area determination. The work of the proposed algorithms is
demonstrated on images of an occluded and rotated object.

Index Terms— image processing, matched filters, vector
fields, angular invariance, object detection

1. INTRODUCTION

Reliable detection and recognition of objects in images are
challenging tasks for a computer, since in real applications
it is impossible to find two identical images of the same ob-
ject, but they have to be identified as being same. These im-
age variations include rotation, scaling [1], change in light-
ing conditions, or more complex ones, like pose/silhouette
change. However, many applications involve images of ob-
jects of the same size, rotated at arbitrary angles, for exam-
ple: automated microorganism counting/classification tasks
in bio-medical imaging [2]; complex objects might also be
detected by their parts, for which it might be assumed that all
deformations, other than planar rotation, are negligible.

1.1. Related Work

Most of the known rotation-invariant object detection algo-
rithms can be divided into two categories [1]: a) straight-
forward − working with image pixels in spatial domain,
sometimes compensating rotation before detection [3], [4], b)
using transformations like Radon [1], Radon-Fourier [5],
Wavelet [6], HOG [7], Circular Fourier-HOG [2], with
rotation-invariant properties. Latter (HOG and Circular
Fourier-HOG), as well as ”point-features”, like SIFT [8],
Edge Profile Clusters [9], etc. are also used as local image
transformations − they exploit rotation invariance locally,
while continue working with image in the spatial domain.
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The equivariant filters, used in [10], have similar filter kernels
to Generalized Complex Matched Filters (GCMF) [11] and
the kernel equivariance is similar to idea of complex harmon-
ics with opposite-phases to be built into filter kernel (subsec-
tion 2.3) to compensate for angular rotations; however, the
image processing and feature comparison is different.

1.2. Our Research and its Goals

Our previous work was concerned with palm feature extrac-
tion from infrared images using Complex Matched Filters like
GCMF [11], Non-Halo CMF (NH-CMF) [12] or Fast-NH-
CMF [13]. All the filters are rotation covariant, but require ex-
tracted objects to be members of line-like object (LLO) class,
which is true for palm vessels and ridges. However, further
investigation shows that application of the CMF procedure
twice allows to extract almost any1 arbitrary object preserving
rotation covariance. Our research is divided into subsequent
studies. This work lays theoretical grounds for rotation invari-
ant object detection that uses CMF and second order vector
fields (2Φ), and in particular − shows that it is possible to ac-
quire True Positive (TP) matches of arbitrarily rotated objects
even in cases of defects, such as occlusions/missing parts. In
some cases these defects may occupy upto half of the image
area of detectable object. Further work will deal will all other
possible cases like True Negatives, and suppression of False
Positive (FP) responses and misses. Therefore, it is yet im-
possible to evaluate the performance of proposed algorithm
in terms of ROC or TP/FP curves and we mostly focus our
attention on theoretical derivations.

2. BASIC THEORY − LINEAR CASE

2.1. 2Φ fields − their acquisition and some properties

Second order vector fields 2Φ (or 2PHI) are 2D vectorial
fields that are generated by processing the original image
f(x, y) by some acquisition algorithm and describe this im-
age, such that each element c⃗(x, y) of 2Φ such that:
• its magnitude |⃗c(x, y)| represent the similarity of neigh-

borhood area of pixel f(x, y) to LLO,
• its angle Arg [⃗c(x, y)] represent the doubled angle of

LLO, found in the neighborhood area of pixel f(x, y).

1problematic objects will be mentioned in subsection 2.5.



Fig. 1. 2Φ illustration: original image (left), |c(x, y)| (mid-
dle), c(x, y) displayed as vectors (right); Fast-NH-CMF used

For convenience we will also refer to 2Φ fields as being com-
plex fields and denote elements of 2Φ fields with an under-
score (c⃗(x, y) ≡ c(x, y)), because of extensively used com-
plex algebra operations. Properties of 2Φ include: unique
representation of LLO, either full linearity, or semi-linearity
(with respect to LLO, being extracted by an acquisition algo-
rithm). At the moment, techniques that are known for us to
acquire 2Φ fields (like shown in Fig. 1) are:
• analytically − by implicit differentiation,
• second order GCMF − fully linear with Halo effect,
• NH-CMF, Fast-NH-CMF − semi-linear, no Halo effect.

When using CMF’s to acquire 2Φ fields, last step of decreas-
ing angle by half must be omitted. A complex convolution of
two 2Φ fields g(x0, y0) = c(x, y)⊗M(x, y) is defined by:

g(x0, y0) =

∫∫
M

c(x, y) ·M(x− x0, y − y0)dxdy, (1)

where c(x, y) is called an ”input image in 2Φ” (an example is
shown in Fig. 1, right) and M(x, y) − ”filter kernel in 2Φ”.
Since we mostly deal with 2Φ fields, we further omit specify-
ing it every time. Complex convolution is linear operation and
it can be performed using four convolution operations like so
(note: (x, y) are omitted, j =

√
−1):

c⊗M =(Re[c]⊗Re[M ]− Im[M ]⊗ Im[c])+

+ j · (Re[c]⊗ Im[M ] + Im[c]⊗Re[M ]) .
(2)

2.2. Setup for kernel derivation

Suppose we have a shape to detect in 2Φ field, Fig. 2, left.
We can arbitrarily choose its rotation center; here it’s shown
by coordinate line intersection point. We then find minimum
r and maximum R radius of where the shape pixels appear
when rotating at all possible angles. The derived kernel pixels
will localize only within the ring of radial distances of [r;R].

Since complex convolution is linear operation, we can cal-
culate g(0, 0) using (1) by parts: by subdividing whole ker-
nel’s ring of radial distances [r;R] into a sum of smaller sub-
rings, each only one pixel thick. For example, we further ob-
serve a subring with mean radius r0 and thickness of 1 pixel.
At initial derivation state, it contains only a portion of shape’s
2Φ vectors, say, A and B, at angles α and β, accordingly (Fig.

Fig. 2. An image of letter ”F” in 2Φ field − unrotated (left)
and rotated by an angle φ (right)

2, left). When shape is rotated around the chosen center by
some angle φ (Fig. 2, right), all angles increase by the same
amount, and become α+ φ and β + φ, but since the tangents
to all LLO change as well, 2Φ representation of previously
known pixels become multiplied by doubled angle shift coef-
ficient ej2φ and previously known 2Φ vectors become A·ej2φ
and B · ej2φ.

2.3. Derivation of M2 kernel for object detection

Object detection M2 kernel is defined for 2Φ field in polar
coordinates by the following identity:

M2(ρ, θ) = D(ρ) · e−j2θ, (3)

where D(ρ) is yet unknown complex function. We derive the
conclusions only for a subring of radius r0, and using linearity
equivalent conclusions might be drawn for any other subring
of any other radius within the kernel area. When complex-
convolving unrotated image c(ρ, θ) (Fig. 2, left) and kernel
M2(ρ, θ) with yet unknown D(r0), the result at the center of
the object is:

g(0, 0)r0 = D(r0)e
−j2αA · r0 +D(r0)e

−j2βB · r0. (4)

Since all the values, except D(r0) and g(0, 0)r0 are known,
the equation (4) can be solved for D(r0) as:

D(r0) =
g(0, 0)r0

r0 · (e−j2αA+ e−j2βB)
, (5)

where g(0, 0)r0 is the filter subring response we demand at
this location. When the object is rotated (Fig. 2, right), com-
plex convolution at the center yields same result:

g(0, 0)+φ
r0 =

= r0 ·
(
D(r0)e

−j2(α+φ)Aej2φ +D(r0)e
−j2(β+φ)Bej2φ

)
= r0 ·D(r0) ·

(
e−j2αA+ e−j2βB

)
= g(0, 0)r0 .

(6)

Notice how filter subring response g(0, 0)r0 is indifferent to
rotation angle φ (rotation invariance). In general, for any ρ-
th subring with radius ρ and N(ρ) pixels in it, D(ρ) can be
calculated as follows:

D(ρ) =
g(0, 0)ρ

ρ ·
∑N(ρ)

i=1 P i(ρ) · e−j2·θi(ρ)
, (7)



where P i(ρ) and θi(ρ) are i-th pixel’s value in 2Φ and angle
in polar coordinates. If all the g(0, 0)ρ are chosen as positive
real numbers and: ∫ R

r

g(0, 0)ρdρ = 1, (8)

then because of the superposition M2 filter must always react
to the same object as ”1”, despite object rotation. By specify-
ing different values of g(0, 0)ρ for different ρ you can specify
which radius’ details are more important than others. Some-
times the processed images may have different contrast and
g(x, y) = c(x, y)⊗M2(x, y) may deviate from chosen ”1”,
but in theory it shall remain a positive real number, which
is convenient to test, for example, using this function (with
imaginary part penalty coefficient αg chosen as high as you
like):

g(x, y) =
0.5 ·

(
Re

[
g(x, y)

]
+
∣∣Re

[
g(x, y)

]∣∣)
1 + αg ·

∣∣Im [
g(x, y)

]∣∣ . (9)

2.4. Derivation of M1 kernel for object angle estimation

Object angle estimation kernel M1 is defined for 2Φ field in
polar coordinates as follows:

M1(ρ, θ) = E(ρ) · e−j1θ, (10)

where E(ρ) is yet unknown complex function. Following ex-
actly the same steps as in subsection 2.3, one can proof, that
for rotated shape M1 kernel responds as:

g(0, 0)+φ
r0 = g(0, 0)r0 · ejφ, (11)

and that in general, for any ρ-th subring with radius ρ and
N(ρ) pixels in it E(ρ) can be calculated as follows:

E(ρ) =
g(0, 0)ρ

ρ ·
∑N(ρ)

i=1 P i(ρ) · e−j·θi(ρ)
. (12)

If all the g(0, 0)ρ are chosen as positive real numbers and con-
dition (8) is met, then because of superposition M1 filter must
always react to the same object as ejφ, so at the center of an
object Arg[c(x, y)⊗M1(x, y)] = φ (rotation covariance).

2.5. Known Problems for Linear Case

Both − M2 and M1 kernels exist only when the respective
denominators in (3) and (10) are non-zero; and the closer the
value of the denominator is to zero, the more unstable is the
filter behavior (e.g. for noise and distortions). When con-
structing a kernel, subrings that fail to satisfy the non-zero
denominator condition, as well as unstable subrings, might
be ignored to improve overall filter stability. Known objects
that fail to satisfy (10) are symmetric: circles, crosses, etc. −
for them it is impossible to determine their rotation angle.

Fig. 3. M2 kernel denominator coefficients (absolute values)
(left) and M2 kernel used for detection of bike (from Fig. 1)
(right)

Fig. 4. Kernel segmentation mesh (left) and subresponses it
produces for original image from Fig. 1 and the same oc-
cluded image, rotated by 30o counter clockwise (right)

With an object center placed in the middle of image in
Fig. 1 (left) we are now able to generate kernel denominator
coefficients for (7) (shown in Fig. 3, left)) and (12), as well
as to generate kernel itself. M2 kernel for angle invariant bike
(from Fig. 1, left)) detection is shown in Fig. 3 (right). The
main issue of linear approach is that the kernel occupies more
area than object itself and is prone to neighbor objects, oc-
clusions and missing parts, thus producing false positives and
misses.

3. NON-LINEAR ENHANCEMENTS

To deal with mentioned issue we break kernel into segments
(a single filter response turns into a set of subresponses), and
we compare different segment subresponses as sets (to ignore
occluded regions).

3.1. Kernel Segmentation

Kernel is segmented into Nρ radial parts and for each radial
parts into Nθ(ρ) angular parts. Full kernel mesh used in our
experiments can be seen in Fig. 4 (left). In Fig. 4 (right)
each subset of subresponses, belonging to the same radius
is called ”row”, and we further compare subresponses row-
to-row. As you can see, most of the subresponses from the
training image are still identifiable (only shifted) even when
image is rotated because of the rotation invariant property of



the M2 filter. Occluded or missing parts produce the different
subresponses that must be rejected/ignored. Training image
also provides an object active area mask m(ρ) where training
image subresponses are above a certain threshold − it is the
only area where the comparison of subresponses between the
training and test images take place.

3.2. Vector Row Comparison

Given a ρ-th row of subresponses (vectors) a(ρ) we are going
to define and use some special operations on them. A circular
shift of row by n cells to the right will be written as a(ρ)n. We
will also use element-wise operations, like subtraction, mul-
tiplication ”∗” and absolute value calculation abs[]. The last
operation to mention is a summation of row elements sum[].

3.2.1. Discrete Comparison

For each row ρ = 1...Nρ, we observe every possible shift of
the training subresponse row Tr(ρ)Θ, Θ = 0, ...Nθ(ρ) − 1,
and compare it with non-shifted test image subresponse row
Test(ρ) within the allowed area m(ρ)Θ by calculating error:

∆(ρ,Θ) = sum [abs [Test(ρ)− Tr(ρ)Θ] ∗m(ρ)Θ] . (13)

3.2.2. Comparison Using Linear Interpolation

The comparison method stays the same, it is only supposed
that object can be rotated by a fraction of cells that kernels
was originally divided into (Fig. 4, left). Simplest approach
to overcome this difficulty is to use linear interpolation and
instead of comparing Tr(ρ)Θ with the test image, use inter-
polated trained row:

Tr(ρ)[Θ+k] = (1− k) · Tr(ρ)Θ + k · Tr(ρ)Θ+1, (14)

where optimal value for k ∈ [0, 1] can be found using Least
Square Error ∆(ρ, [Θ + k]) minimization. In both cases, the
position either Θ(ρ), or [Θ + k](ρ) with the smallest ∆, as
well as the difference in rows is saved, because it provides
the most similar subresponse row alignment. [Θ + k](ρ) is
a more precise circular shift that can be determined in the
row comparison stage, and it is not so dependent of kernel
segment sizes. Furthermore, knowing the angular length of
each segment in each row δθ(ρ), the angular shift of the row
can be then calculated as:

φ(ρ) = [Θ + k](ρ) · δθ(ρ). (15)

3.3. Accurate object angle estimation

Statistically, object rotation angle might be estimated us-
ing histogram of determined φ(ρ) values over all analyzed
radiuses ρ. However, traditional approach to drawing his-
tograms with dividing angular interval [0, 360) into Nφ

bins is not precise enough, because it produces round-offs

Fig. 5. GWAH for heavily (about 50%) occluded and rotated
by +30o object from Fig. 1

when assigning values into a specific bin. Therefore, we
use Gaussian-like function Weighted Angular Histogram
(GWAH) for object angle determination, where each peak
with angle φ(ρ) adds a Gaussian-like function, defined as:

G(φ− φ(ρ)) = e−
(φ−φ(ρ))2

2σ2 , (16)

to a continuous histogram. Constant σ is chosen to be 1/3-rd
of a cell’s angular width, so the function overlaps the region
of 2 adjacent cells with its 99% of energy. An example of
GWAH is shown in Fig. 5: despite more than 50% missed
guesses of the comparison algorithm, the determined angle of
an object is still very accurate: 27o.

3.4. Final Comparison

Once the object’s angle is determined as Mode of GWAH:
φobj = Mode(GWAH(φ(ρ))), the process described by
(15) can be reversed to acquire correct [Θ + k]φobj

(ρ) for
every ρ. Then, the comparison is repeated by calculating
∆(ρ)[Θ+k]φobj

(ρ) and thresholding it. Subresponses that
didn’t pass the thresholding stage are probably distorted: rep-
resent missing or occluded parts. We can also calculate M2

and M1 responses − total, and for each subring separately.

3.5. Summary − Process Flow

To sum it up, when processing an image (that is, for every
coordinate), to acquire a True Positive:
1. image region is complex-multiplied with M2 and, if

needed, M1 kernel segments,
2. discrete and interpolated comparison of subresponses is

performed,
3. iff different rows disagree on object rotation angle,

GWAH is analyzed,
4. subresponse rows are compared, object’s active area and

filter responses are calculated,
5. finally, (9) is used to test if the object is found.

4. EXPERIMENTAL RESULTS

Figure 6 demonstrates the performance of described algo-
rithm on a distorted rotated image from Fig. 1. A bright area



Fig. 6. Test images analyzed by described method, from left
to right: original image, result before GWAH analysis, result
after GWAH analysis

denotes matched subresponse regions; longer (blue) arrow
represents the angle of the object, determined by GWAH,
shorter (green) arrow − angle, determined by M1 filter. Since
most of image area was ignored (and not shown as bright),
the results may disagree. The repeated set comparison (after
φobj estimation) improves the M1 angle estimate. To check
whether an object is found (9) can be used, but it must be
noted that filter response is proportional to the matched area,
which is a known value. Computational cost of image con-
volution with segmented kernel is not greater than an image
convolution with a kernel itself. Step 3.2.1 may be omitted
at all, because acquiring either k < 0, or k > 1 means a
discrete-shifted row match. A choice of threshold for row
difference is still a subject of study, as well as futher filter
developments.
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