
MAXIMUM LIKELIHOOD BASED MULTI-CHANNEL
ISOTROPIC REVERBERATION REDUCTION FOR HEARING AIDS
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ABSTRACT
We propose a multi-channel Wiener filter for speech derever-
beration in hearing aids. The proposed algorithm uses joint
maximum likelihood estimation of the speech and late rever-
beration spectral variances, under the assumption that the late
reverberant sound field is cylindrically isotropic. The derever-
beration performance of the algorithm is evaluated using com-
puter simulations with realistic hearing aid microphone sig-
nals including head-related effects. The algorithm is shown to
work well with signals reverberated both by synthetic and by
measured room impulse responses, achieving improvements
in the order of 0.5 PESQ points and 5 dB frequency-weighted
segmental SNR.

Index Terms— multi-channel wiener filter, maximum
likelihood, speech dereverberation, isotropic, hearing aids

1. INTRODUCTION

Hearing impaired listeners experience increased difficulty in
understanding speech in reverberant and noisy conditions [1].
In order to enable them to attain the same speech intelligi-
bility as normal hearing persons, various signal enhancement
algorithms are used in Hearing Aids (HAs). Both single- and
multi-microphone (spatial) methods are commonly used in
HAs, notably spectral modification and beamforming [2].

The Multi-channel Wiener Filter (MWF) [3] is a method
which currently receives a lot of attention in the research com-
munity, e.g. [4], [5], [6]. Implementation of the MWF re-
quires knowledge of the inter-microphone covariance matri-
ces of the target signal (i.e. speech) and of the interference
(e.g. ambient noise or reverberation). Traditionally a Voice
Activity Detector (VAD) is used to enable noise covariance
matrix estimation during speech pauses, e.g. [6]. This ap-
proach is based on the assumption that the interference covari-
ance matrix is constant during speech presence. In reverber-
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ant conditions this assumption is not valid, which necessitates
on-line estimation of the reverberation covariance matrix.

In the present study, we propose an MWF algorithm
for speech dereverberation, which jointly estimates the tar-
get and interference spectral variances also during speech
presence. The algorithm uses a Maximum Likelihood Esti-
mation (MLE) method presented first in [7] which is novel
in the speech dereverberation context. We assume a cylin-
drically isotropic spatial distribution of the late reverberation
and a known speaker direction. Therefore, the structure of
the inter-microphone covariance matrices of the speech and
reverberation is known and only the time-varying spectral
variances (the scaling factors of these matrices) are estimated
in the MLE framework.

The proposed algorithm bears some similarities to the one
presented in [4]. In both methods an isotropic spatial distri-
bution of the late reverberant field is assumed and the spec-
tral variances of the interference are estimated regardless of
speech presence. However, while [4] uses intermediate “ref-
erence signals” (based on [5]) to estimate the reverberation
variances, we compute these estimates directly form the input
covariance matrix (based on [7]). The method presented here
is designed for and evaluated in a hearing aid usage scenario
and with real room impulse responses, whereas in [4], micro-
phones were assumed to reside in free field and reverberation
was simulated using an image model of a rectangular room.

2. SIGNAL MODEL AND ASSUMPTIONS

The proposed algorithm operates on M microphone signals
represented as complex-valued Short Time Fourier Transform
(STFT) coefficients. They are collected in a vector

y(k, n) = [y1(k, n) . . . ym(k, n) . . . yM (k, n)]T , (1)

where ym(k, n) is the STFT coefficient of the m-th micro-
phone signal in the k-th frequency sub-band and the n-th time
frame. Based on the assumption of signal independence be-
tween sub-bands, we will operate on them separately. This



allows us to omit the frequency index k in the following de-
scription without loss of generality.

The input signal y(n) is assumed to be the sum of the
target speech component s(n) and an interference component
v(n). Both s(n) and v(n) are defined similarly to (1). The in-
terference v(n) is assumed to be late reverberation, ambient
noise, or a sum of both. In either case, it is assumed to be un-
correlated to the target speech component s(n). This allows
us to model the covariance matrix of the input as the sum of
the covariance matrices of the two signal components:

Φy(n) = E{y(n)yH(n)}
= E{s(n)sH(n)}+ E{v(n)vH(n)}
= Φs(n) + Φv(n). (2)

We model the speaker as a point source and therefore the
speech component can be expressed as

s(n) = s(n)d. (3)

The scalar signal s(n) represents the speech signal at a certain
reference position, commonly chosen as one of the micro-
phones. Elements of the vector d represent relative transfer
functions of the speech signal between the reference position
and all microphones of the array. The vector d is assumed
to be known, and depends primarily on the microphone array
geometry and on the direction of the speech source. In the
beamforming context, we will refer to d as a steering vector.

We employ an isotropic model of the interference v(n).
Taking this and (3) into account, (2) can be rewritten as

Φy(n) = φs(n)ddH︸ ︷︷ ︸
Φs(n)

+φv(n)Γiso︸ ︷︷ ︸
Φv(n)

, (4)

where φs(n) and φv(n) are, respectively, (scalar) spectral
variances of the speech and of the interference component
of the reference microphone signal. Because, in general, the
speech and noise processes are non-stationary, their variances
φs(n) and φv(n) are time-varying. The matrix Γiso is the
normalized covariance matrix of the isotropic sound field,
and similarly to d, is assumed to be known and constant.

2.1. Discussion of validity of assumptions

The intended application of the proposed algorithm is intel-
ligibility improvement of reverberant and/or noisy speech in
HAs. Assumptions with regard to the employed signal model
are made to capture aspects of the actual physical signals
which are most relevant to this particular task and application.

In reverberant conditions, speech intelligibility is affected
primarily by late reverberation, whereas early reflections are
believed to be beneficial [8]. For that reason, the model of the
interference was chosen to describe properties of specifically
the late part of the reverberation.

In [9], the spatial energy distribution of reverberant sound
fields was studied. It was shown that all spatial directions
are represented in the late reverberant energy, but only few
directions are in the energy of early reflections. This supports
our assumption that the late reverberant field is isotropic.

An isotropic model of the ambient noise is also ecolog-
ically justified, especially in applications where there is no
prior knowledge on the spatial distribution of the noise, e.g.
in hearing aids. The spatial probability distribution of the
noise impinging on the microphone array can reasonably be
assumed uniform, i.e. isotropic.

The assumption of d being known is reasonable in hearing
aid design. It is supported by the fact that, in most situations,
the hearing aid user is looking at the person he is speaking
with (e.g. to facilitate lip reading). Hence, d corresponds to a
target source frontal to the HA user.

In the present work, the interference v(n) is modeled as
independent, and therefore uncorrelated with the speech sig-
nal s(n). This assumption is natural for the ambient noise
but is questionable with regard to the reverberation. Our ra-
tionale is that the late part of the room impulse responses is
considerably disrupted by thermal fluctuations [10] and small
movements of the source and microphone array [11]. These
instabilities are unavoidable in real use of a HA and effec-
tively decorrelate the late reverberation from the direct sound.

3. MULTI-CHANNEL WIENER FILTER

It is well known that the MWF is the Linear Minimum Mean
Square Error (LMMSE) solution to the problem of signal es-
timation in a setup presented in Section 2, [3]. It is also
well known that the MWF can be factorized into a Minimum
Variance Distortionless Response (MVDR) beamformer and
a Single Channel (SC) Wiener filter [3].

The structure of the proposed MWF-type algorithm is de-
picted in Fig. 1. The signal resulting from the MWF is the
LMMSE estimate of the target speech signal at the reference
position and may be written as

ŝ(n) = wH
mwf(n)y(n), where (5a)

wmwf(n) =

[
φso(n)

φso(n) + φvo(n)

]
︸ ︷︷ ︸

gsc(n)

Γ−1
isod

dHΓ−1
isod︸ ︷︷ ︸

wmvdr

. (5b)

In (5a–5b) the vector of MVDR beamformer coefficients and
the SC Wiener filter gain have been denoted as wmvdr and
gsc(n), respectively. φso(n) and φvo(n) denote the spectral
variances of the speech and the interference at the output of
the MVDR beamformer. They can be expressed as

φso(n) = φs(n), (6a)

φvo(n) = φv(n)(d
HΓ−1

isod)−1. (6b)
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Fig. 1. Block diagram of the proposed algorithm.

The MVDR beamformer does not distort the variance of the
speech (6a), but the variance of the interference has to be cor-
rected by the beamformer suppression factor (6b) [3]. It is
important to note that wmvdr depends only on Γiso and d.
Because we assume that these are known and constant, the
beamformer coefficients wmvdr can be calculated beforehand.

The SC Wiener filter gain gsc(n) is time-varying and de-
pends on the spectral variances φs(n) and φv(n). They are
unknown and have to be estimated from the noisy/reverberant
observations y(n) for each time frame and frequency bin.

Several methods exist for estimating φs(n) and φv(n),
e.g. [4], [5], [7]. The proposed algorithm uses MLEs which
were derived by Ye and DeGroat [7] for a similar signal model
to the one employed in the present study, although in a non-
acoustic context. These MLEs may be expressed as

φ̂v(n) =
1

M − 1
tr
{(

I− dwH
mvdr

)
Φ̂y(n) Γ−1

iso

}
, (7a)

φ̂s(n) = wH
mvdr

(
Φ̂y(n)− φ̂v(n) Γiso

)
wmvdr, (7b)

where Φ̂y(n) is the estimate of the covariance matrix of the
input signal, and tr{·} denotes the matrix trace operator.

4. EXPERIMENTAL SETUP

In order to evaluate the performance of the proposed algo-
rithm, a series of computer simulations was conducted, Tech-
nical details on these simulations are described in Sections
4.1–4.2 and the evaluation results are discussed in Section 5

4.1. Speech signals and room impulse responses

Recorded speech utterances of male and female native En-
glish speakers were obtained from the TIMIT database [12].
Individual utterances were concatenated into longer se-
quences and artificially reverberated by convolving them
with either synthetic or measured multi-channel Room Im-
pulse Responses (RIRs). Each RIR consisted of 4 channels
corresponding to the microphones of a pair of 2-microphone

Table 1. Acoustic parameters of the rooms simulated in the
evaluation experiment.

Room T60 [s] C50 [dB] DRR [dB]

Bathroom 0.8 5.2 −10.1
Cellar 1.2 5.7 2.2
Staircase 2.3 11.0 4.1
Office 1.4 8.8 2.3
Auditorium 1.3 13.4 5.2

Isotropic 1.0 4.7 −0.4

Oticon Epoq Behind-The-Ear (BTE) HAs placed on the ears
of a Brüel&Kjær Head And Torso Simulator (HATS).

Five RIRs were recorded in real rooms with the source
of the probe sound placed in front of the HATS at a dis-
tance between 0.9 m and 2 m. The reverberation time T60,
the clarity index C50 and the Direct-to-Reverberation Ratio
(DRR) calculated from these RIRs are given in the upper part
of Table 1. In none of the used rooms the reverberation was
truly isotropic and in some of them it was strongly dominated
by certain directions (especially in the bathroom and audito-
rium). In that sense, the used RIRs constitute a fair sample of
reverberant conditions a hearing aid user might encounter.

A sixth, synthetic RIR was designed to measure the
performance of the proposed algorithm in conditions com-
pletely matching the underlying assumptions on reverbera-
tion isotropy. The reverberation tail of the synthetic RIR was
modeled by a sum of 72 exponentially decaying independent
white noise sequences, filtered through anechoic Head Re-
lated Transfer Functions (HRTFs) measured for 72 evenly
spaced positions on the horizontal circle of the HATS. The
direct path component of this RIR was computed from the
HRTF of a frontally placed sound source. The HRTFs were
recorded with an equivalent HA/HATS combination as the
real RIR measurements. Parameters of the synthesized RIR
are given in the last row of Table 1 (denoted as “Isotropic”).

4.2. Implementation of the proposed algorithm

The simulated reverberant microphone signals were trans-
formed into time-frequency samples ym(k, n) using an STFT
filterbank. An inverse STFT combined with an overlap-add
procedure was used to resynthesize the output signal (see
Fig. 1). The frame length of the analysis was 8 ms with 50%
overlap between consecutive frames. Traditionally, longer
frame lengths are used in speech processing, however, in
hearing aids short processing delay is a strong design con-
straint. A square root Hann window function was used in
both the analysis and the synthesis filterbank. A sampling
frequency of 16 kHz was used based on the assumption that
frequencies above 8 kHz are negligible in speech perception.



In order to implement the algorithm with (5), (6), and (7),
Φ̂y(n), d, and Γiso are needed. The input covariance matrix
Φ̂y(n) was estimated from y(n) using recursive averaging
with a time constant of 40 ms.

For each reverberant condition a different steering vec-
tor d was calculated from the respective RIR truncated to the
part containing only the direct path response. Vectors d were
computed by discrete Fourier transformation of the truncated
RIRs after appropriate zero-padding. In the synthetic rever-
beration condition, d was computed from the anechoic im-
pulse response of the target direction.

The normalized covariance matrix of the isotropic sound
field Γiso was modeled as

Γiso =
1

S

S∑
s=1

dhrtf(αs)d
H
hrtf(αs), (8)

where each relative transfer function vector dhrtf(αs) corre-
sponded to the HRTF measured in an anechoic chamber for
one of the azimuth angles αs ∈ {5◦, 10◦, . . . , 360◦} using
the HA/HATS. In this way, Γiso represents the frequency-
dependent inter-microphone covariance matrix (up to a scalar
multiplication) of a cylindrically isotropic sound field.

5. PERFORMANCE EVALUATION

The evaluation of the proposed algorithm was based on three
objective performance measures: Speech-to-Reverberation
Modulation energy Ratio (SRMR) [13], Frequency-Weighted
Segmental SNR (FWSegSNR) [14] and Perceptual Evalua-
tion of Speech Quality (PESQ) [14]. Their Matlab implemen-
tations were obtained from the 2014 Reverb Challenge [15]
website. The evaluation results are presented in Fig. 2.

The three performance measures were calculated for: the
unprocessed reverberant signal y1(n), the signal processed
by the beamformer only (wH

mvdry(n)), and the reverberant
signal enhanced by the full algorithm (ŝ(n)) (see (5) and
Fig. 1). The results calculated from these signals are denoted
as “Input”, “MVDR”, and “MWF”, respectively. The pro-
posed algorithm was evaluated for two different microphone
array configurations: 4-microphone (using both HAs), and
2-microphone (using only the left HA). In the 4-microphone
case we assume that the signals are communicated between
the two hearing aids instantly and without error.

The reference signal used to compute FWSegSNR and
PESQ was the direct path speech signal s(n). In case of the
SRMR, which is a non-intrusive measure, the score of the ref-
erence signal was also computed and is presented in Fig. 2(b).

5.1. Discussion of results

For the simulations with synthetic isotropic reverberation (de-
noted as “Isotropic”), the proposed algorithm results in an
increase of all considered performance measures. Both the
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Fig. 2. (a) FWSegSNR, (b) SRMR and (c) PESQ scores of the
reverberant (“Input”), and processed (“MVDR” and “MWF”)
signals for different reverberation conditions, and configura-
tions of the microphone array.

MVDR beamformer and the SC Wiener filter stages of the al-
gorithm contribute positively to that increase. Moreover, the
4-microphone configuration results in a better performance
than the 2-microphone configuration. This is an indication,
that the proposed method is able to use and benefit from the
additional spatial information available in the 4-microphone
setup, i.e. when two HAs are used.

In most simulations with RIRs measured in real rooms the
increase in the performance measures was lower than in the
synthetic isotropic reverberation condition. Nonetheless, in
some cases the improvement was of similar magnitude (in the
cellar, staircase, and office conditions). This suggests that the
isotropic late reverberation model is sufficiently accurate in
many real-world reverberant environments and can be used
to effectively dereverberate the signal. The increase of the
performance scores was smaller in simulations using the RIR
of the auditorium, and even negative in the bathroom con-



dition (PESQ and FWSegSNR). Analysis of these two RIRs
revealed that the isotropy assumption was not valid in these
situations because of isolated specular reflections dominating
the reverberation.

The sound quality and speech intelligibility of the pro-
cessed signals was subjectively assessed through informal lis-
tening tests. The perceptual gain from using the algorithm
was most pronounced in the simulated isotropic reverberation
condition. In the cellar, staircase and the office conditions,
the speech was audibly dereverberated and the sound quality
was almost unaffected. In the auditorium and particularly in
the bathroom conditions, sound artifacts were noticeable.

It is relevant to mention, that the algorithm proposed in
this paper is also applicable to target signals other than speech
and to interference types other than reverberation. However, it
is a prerequisite that the spatial distribution of the interference
is isotropic or is otherwise known or estimated. Although
the evaluation of the proposed algorithm was conducted in
reverberant-only condition, it is reasonable to expect similar
performance in an arbitrary isotropic non-stationary noise.

6. CONCLUSION

In this paper we have proposed a Multi-channel Wiener Fil-
ter (MWF) which uses joint Maximum Likelihood Estima-
tion (MLE) of speech and reverberation spectral variances.
The MLE method was adopted from the work of Ye and De-
Groat [7]. The proposed MWF algorithm was implemented
and its speech dereverberation performance for hearing aids
was evaluated. It was shown that the proposed algorithm per-
forms well in both synthetic and realistic reverberation con-
ditions. The performance of the proposed method was best
when the assumption on the interference isotropy was close
to valid. In non-isotropic reverberation/ambient noise condi-
tions on-line estimation of the interference covariance matrix
structure could be used to improve the performance. This is a
topic for future research.
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