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(james.leblanc, johan.carlson)@ltu.se

ABSTRACT
Blind adaptation with appropriate objective function results
in enhancement of signal of interest. Skewness is chosen as a
measure of impulsiveness for blind adaptation to enhance im-
pacting sources arising from defective rolling bearings. Such
impacting sources can be modelled with harmonically related
sinusoids which leads to discovery of harmonic content with
unknown fundamental frequency by skewness maximization.
Interfering components that do not possess harmonic relation
are simultaneously suppressed with proposed method. An ex-
perimental example on rolling bearing fault detection is given
to illustrate the ability of skewness maximization in uncover-
ing harmonic content.

Index Terms— Adaptive filters, harmonic analysis,
higher order statistics, rolling element bearings

1. INTRODUCTION

Adaptive filters can be trained to meet a variety of objectives.
A classical objective, known as least mean squares (LMS),
minimizes the mean squared error between the adaptive filter
output and a target signal [1]. However, LMS requires knowl-
edge of the source signal for adaptation. In some applications,
exact knowledge of this target signal is not available and must
be replaced with more vague information. In such a case, a
proper figure of statistical characteristics of the desired sig-
nal may suffice. Such an adaptation process can be defined as
blind adaptation. Typical examples for such blind processing
can be provided from digital communications, seismic decon-
volution and image restoration [2].

Characterizing the statistical properties of the desired sig-
nal is done by choosing an appropriate objective function.
Depending on the physical phenomenon, a proper measure
of merit must be selected. One of the higher order statistics,
normalized third order moment or skewness, can be utilized to
measure asymmetry in order to reveal impulsiveness in blind
adaptation. To quantify asymmetry in the probability density

function (PDF), skewness has previously been used in dif-
ferent signal processing applications such as speech polarity
detection [3] and vocal source characterization [4].

Depending on the concept of blind adaptation, impacting
signals buried in noise were enhanced through adaptive fil-
tering by using the skewness as objective in [5]. Objective
surface characteristics and convergent behaviour of skewness
with a deterministic and periodic impulsive signal model were
analysed by a recent work [6]. This paper takes further steps
in this direction with computationally and memory efficient
algorithms drawn from the ideas of the blind adaptive filtering
community. The presentation here is directed towards rolling
bearing diagnostics, but the broader application is meant to
be seen as enhancement of harmonically related content of
unknown fundamental frequency under distortion, noise and
severe interference.

The analysis in limited dimensions in [6] with the afore-
mentioned signal model is extended and generalized in order
to understand the mathematical reasoning behind how max-
imizing skewness results in promoting harmonically related
components while attenuating the ones without harmonic re-
lation. Through such an analysis, a signal pre-processing
method for defect detection in rolling bearings is presented
as an application example and supported with an experiment
on mechanical vibrations from industry. Such pre-processing
enables enhancement of impulsiveness by reducing the effects
of linear amplitude and phase distortion.

2. BACKGROUND

2.1. Prior Work

The relation between the presented study and the blind de-
convolution problem is not specifically discussed, however, a
number of the ideas and concepts presented here are drawn
from that research community.

Minimum Entropy Deconvolution (MED) was suggested
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Fig. 1. Skewness maximization as a signal pre-processing ap-
proach for rolling bearing diagnostics.

by Wiggins [7] to recover a seismic trace by minimizing the
entropy of an observed signal through maximization of the
varimax norm. Donoho [8] generalized the method and in-
vestigated the concept of choosing a proper objective function
to decrease Gaussianity. This groundwork idea was later em-
ployed for defect detection problem for condition monitoring
purposes [9] and for deconvolution of impacting signals [10].

Rolling bearings are widely used in rotating machinery
to ease rotational movement. Impacting signals can emerge
from defective bearings due to the contact of rotating ele-
ments to a fault on a bearing race. Various mechanisms, such
as undesired vibrations, may appear to mask the desired im-
pulsive signature arising from a possible defect, making fault
detection a challenging problem in practice [11, 12]. Such
impulsive signatures can be modelled as harmonic series [6]
where undesired vibrations are regarded as sinusoidal inter-
ference. In such a problem setting, defect signatures can be
recovered by suppressing the undesired sinusoids while en-
hancing the harmonic content. As shown in Fig. 1, the out-
come from such an algorithm can then be introduced to spec-
tral analysis for condition assessment.

Examples of applications where harmonic content detec-
tion is essential can be given from power systems where neu-
ral networks [13] and wavelet transform [14] may be used.
Harmonic analysis can be useful in pitch detection problems
as well [15]. Period histogram and product spectrum were
examined in [16] for fundamental frequency measurement.

The presented study here shows how maximizing skew-
ness enhances harmonically related components. Forthcom-
ing sections will explore this ability by analysing the relation
between skewness and harmonic content.

2.2. Skewness of Harmonic Content

A continuous-time deterministic signal model of an harmonic
series is represented as

s(θ, t) =
N
�

r=1

αr cos(rω0t) (1)

with αr ∈ R and

θ =
�

α1 α2 · · · αN

�T (2)

is the parameter vector of harmonic amplitudes. Arbitrary
phase will also be introduced to the signal model after some

derivations on this simplified case.
Employing this signal model can be justified by consider-

ing the Fourier series. It is known that periodic series of im-
pulses in time domain have a spectral representation of equal
amplitude harmonically related sinusoids. Thus, it is natural
to think of impulsive signatures arising from rolling bearings
with the given signal model.

Stating the problem in the opposite way results in an ap-
plication in which the discovery of an impulsive signal of un-
known fundamental period is desired. This signal of interest
may be obscured, or even completely buried by linear am-
plitude and phase distortion, possible disturbances, noise and
interference. Then the challenge becomes to uncover buried
harmonic content in an efficient way by exploiting the knowl-
edge of the PDF, time and frequency domain representation
of an impulse train.

The skewness φ of the impulse train s(θ, t) is

φ(s(θ,t)) =
E{s3(θ, t)}

(E{s2(θ, t)})3/2
, (3)

in which the expectation operation on deterministic and peri-
odic s(θ, t) can be replaced by integration over time. To ob-
tain an expression of the skewness of s(θ, t), we begin with
expanding the numerator

ω0

2π

2π/ω0
�

0

s3(θ, t) dt. (4)

As the integrand is a polynomial strictly of order 3, all mono-
mial terms will also be of order 3. Each of these monomials
fall into one of the three classes listed below. Let b, c ∈ Q,
i, j, k ∈ [1, N ] ⊂ Z and i < j < k:

i) The elements of the first class are strictly cubed sinusoids
of a single frequency, therefore

ω0

2π

2π/ω0
�

0

α3
i cos

3(iω0t) dt = 0, (5)

since any odd-order moment of a symmetric function is zero.

ii) The second class consists of cross-terms of two harmonics,
where

ω0

2π

2π/ω0
�

0

α2
iαj cos

2(iω0t) cos(jω0t) dt =

=

�

b
�

α2
iαj

�

, if j = 2i

0, otherwise.
(6)

iii) Finally, the third class consists of cross-terms of three har-



monics, which yields

ω0

2π

2π/ω0
�

0

αiαjαk cos(iω0t) cos(jω0t) cos(kω0t) dt =

=

�

c (αiαjαk) , if k = i± j

0, otherwise.
(7)

These three classes determine the structure of skewness for
the given signal class of harmonic series. Therefore, a neces-
sary condition for the harmonic series to give non-zero skew-
ness is to include harmonically related content satisfying (6)
or (7). A fundamental notion obtained at this point is that har-
monically related content (as defined above) is necessary for
periodic signals with non-zero skewness.

As we wish to broaden the class of considered signals
s(θ, t), as well as to account for eventual effects of a trans-
fer function, we now extend (1) to include a phase term in
each harmonic, such as

se(θe, t) =
N
�

r=1

αr cos(rω0t+ γr). (8)

that is collected in the parameter vector of amplitudes αr and
phases γr

θe =
�

α1 α2 · · · αN γ1 γ2 · · · γN
�T

.

Repeating the expansion of the numerator of (3), we obtain
a structure for skewness of the signal se(θe, t) with arbitrary
phase:

ia) The cubed sinusoids of a single frequency with phase com-
ponent will be zero,

ω0

2π

2π/ω0
�

0

α3
i cos

3(iω0t+ γi) dt = 0.

iia) The cross-terms of two harmonics yield










α2
iαj(−

3
4 cos(γj) +

3
2 cos

2(γi) cos(γj)

+ 3
2 cos(γi) sin(γi) sin(γj)), if j = 2i

0, otherwise.

iiia) The cross-terms of three harmonics give






























3
2αiαjαk(− sin(γi) sin(γj) cos(γk)

+ sin(γi) cos(γj) sin(γk)

+ cos(γi) sin(γj) sin(γk)

+ cos(γi) cos(γj) cos(γk)), if k = i± j

0, otherwise.

After these derivations, it can be concluded that maximum
skewness can be achieved by aligning the phase as γr =
0,± π,±2π. Therefore, an algorithm that aims to maximize
the skewness of a given harmonic content with arbitrary phase
should align each harmonic as proposed.

Further analysis will be conducted through theoretical in-
vestigation of the harmonic relation and a practical example.
As phase alignment is necessary for skewness maximization,
we make the presentation more transparent by dropping the
explicit phase terms, considering only phase aligned signals.

Before presenting the study on the non-harmonic content,
it is worth mentioning about the impact of additive and sym-
metric noise (e.g. Gaussian noise) that is uncorrelated with
the source signal in skewness maximization. As it is a known
fact that any odd-order moment of a symmetric signal is zero,
and due to the assumption of noise being uncorrelated with
the source signal, the outcome of the integral in (4) will not
include a noise term. With consideration of the denomina-
tor in (3), it can be shown that the convergence properties of
skewness are not altered by additive symmetric noise.

2.3. Effect of Non-Harmonic Content on Skewness

The concept of increasing skewness by promoting harmonic
content can be illustrated by a signal model

sd(θd, t) =

N
�

r=1

αr cos(rω0t) + β cos(ωpt), (9)

where ωp, without being an integer multiple of the funda-
mental, is the unknown frequency of a non-harmonically re-
lated component, β ∈ R is the scaling coefficient and θd =
�

α1 α2 · · · αN β
�T is the coefficient vector. Utilizing

the structure for skewness of harmonic series derived in Sec.
2.2 and with the same assumptions on i, j, k, the skewness of
the disturbed signal sd(θd, t) becomes,

φ(sd(θd,t)) =
3
4α

2
iαj +

3
2αiαjαk

�

1
2

�N
r=1 α

2
r +

1
2β

2
�

3

2

. (10)

It is apparent from (10) that in order to increase skewness, β
must be attenuated. After this basic outcome, we can now
introduce an arbitrary number of mutually non-harmonic dis-
turbances that will give a signal model

sd(θd, t) =

N
�

r=1

αr cos(rω0t) +

M
�

p=1

βp cos(ωpt), (11)

with βp ∈ R and a coefficient vector

θd =
�

α1 α2 · · · αN β1 β2 · · · βM

�T
,

where skewness becomes

φ(sd(θd,t)) =
3
4α

2
iαj +

3
2αiαjαk

�

1
2

�N
r=1 α

2
r +

1
2

�M
p=1 β

2
p

�
3

2

. (12)



0 0.05 0.1 0.15 0.2 0.25 0.3
−0.5

0

0.5

Time (sec.)

A
cc

el
er

at
io

n 
(g

)

(a) Observed signal.
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(b) Output signal after skewness maximization.

Fig. 2. Input and output signals for the experimental example.
Outer race ball-pass period is marked.

It is readily seen in (12) that increasing skewness is possible
by amplifying the harmonically related components satisfy-
ing (6) and (7), while attenuating the ones without such re-
lation. As mentioned in Sec. 2.2, we can state the problem
in the opposite way to propose an approach where the goal is
to uncover harmonic content with unknown fundamental pe-
riod by maximizing the skewness of the given signal. Such an
approach will be exploited in the next section to illustrate an
experimental example on an industrial setting to support the
analytical derivations.

3. EXPERIMENTAL EXAMPLE WITH
MECHANICAL VIBRATIONS

Undesired vibrations in a rotating machinery may arise from
misalignment or wear of rotating parts. An interference pro-
duced by these parts typically manifests itself at a multiple of
rotational frequency.

Such disturbances can be modelled as sinusoids interfer-
ing to the signal of interest as in (11). To experiment such a
case, an example from industry is presented.

The measurement signal shown in the upper plot of Fig.
2 was collected using an accelerometer magnet mounted to
a fan. This measurement represents a typical observation of
a vibration signal from an industrial environment. There is
no sign of an impulsive signature that may correspond to a
bearing defect. The estimated auto-regressive (AR) frequency
spectrum P(f) [17] for this observed signal depicted in the up-
per plot of Fig. 3 shows an apparent sinusoid at 300 Hz, which
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(a) Frequency spectrum of the observed signal.
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(b) Frequency spectrum of the output signal.

Fig. 3. Input and output signal AR frequency spectra. Outer
race ball-pass frequency (bpfo = 77.5 Hz) and its harmonics
are marked.

is a multiple of the shaft rotation frequency (25 Hz). The outer
race ball-pass frequency (bpfo) and inner race ball-pass fre-
quency (bpfi) are calculated [18] to be 77.5 Hz and 122.5 Hz
respectively, where there are no visible components at these
frequencies and their harmonics stronger than the disturbance
in the frequency spectrum.

The output signal shown in the bottom plot of Fig 2 was
achieved by processing the observed signal by a 225-tap adap-
tive FIR filter (f ) to maximize the skewness of its output
through gradient ascent. The adaptation was accomplished in
an iterative manner as fk+1 = fk + µ∇φ(fk) (with iteration
index k) whereµ > 0 is a small, constant step size and∇φ(fk)

is the gradient of skewness estimated with respect to the filter
f . The gradient equations can be found in [6]. AR spectrum
P(f) for the processed signal is presented in the bottom plot
of Fig 3, where the 300 Hz disturbance was suppressed while
the outer race defect frequency and its harmonics were am-
plified. The spectrum achieved after enhancing the skewness,
thus promoting harmonic relation, provides information about
the bearing status by identifying the existence of a defect. De-
tection of faults on rolling element bearings to prevent ma-
chine failure is an important aspect in predictive maintenance
in industry.

The example illustrates that maximizing skewness through
gradient ascent can be utilized to promote harmonic con-
tent with unknown fundamental frequency and to suppress
non-harmonic components (sinusoidal interference) in an
industrial setting.



4. CONCLUSION

Emerging from the concept of blind adaptation, skewness en-
hancement can be used to recover an unobservable impulsive
signal of unknown fundamental period. This signal of interest
may be obscured, or even completely buried by linear ampli-
tude and phase distortion, possible disturbances, noise and in-
terference. Modelling such an impacting source signal as an
harmonic series enables the investigation of ability of skew-
ness to discover buried harmonic content in an efficient way.

Aforementioned signal model with the structure of skew-
ness for harmonic series was used to explore the theoretical
basis for skewness maximization to promote harmonic con-
tent. It was shown that maximizing skewness is possible by
promoting harmonically related components while suppress-
ing the non-harmonics within a deterministic and periodic sig-
nal class.

An experimental example that supported the analytical
results was performed. The effectiveness of the proposed
method in application to adaptive filtering through gradient
ascent was simply demonstrated. Skewness maximization re-
sulted in discovery of harmonic content and suppression of a
component without harmonic relation.

REFERENCES

[1] Bernard Widrow and Samuel D. Stearns, Adaptive Sig-
nal Processing, PTR Prentice Hall, Englewood Cliffs,
New Jersey, 1985.

[2] Simon Haykin, “The blind deconvolution problem,” in
Blind Deconvolution, Simon Haykin, Ed. PTR Prentice
Hall, Englewood Cliffs, New Jersey, 1994.

[3] Thomas Drugman, “Residual excitation skewness for
automatic speech polarity detection.,” IEEE Signal Pro-
cess. Lett., vol. 20, no. 4, pp. 387–390, 2013.

[4] Tiago H. Falk, Wai-Yip Chan, and Fraser Shein, “Char-
acterization of atypical vocal source excitation, tempo-
ral dynamics and prosody for objective measurement of
dysarthric word intelligibility,” Speech Communication,
vol. 54, no. 5, pp. 622–631, 2012.
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