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ABSTRACT

In this paper, we present an algorithm for fast reconstruction of ban-

dlimited signal from nonuniform samples using shift-invariant space

with Slepian function as a generator. The motivation to use Slepian

functions is that they are bandlimited and most of their energy is

concentrated in the finite time interval . This allows their

truncation in time with controllable error, and results in a reduction

of computational complexity of reconstruction process to ,

where is number of samples, and . As decreasing in-

creases the truncation error, the algorithm offers a tradeoff between

speed and accuracy. The simulation example of signal reconstruction

is provided.

Index Terms— nonuniform sampling, signal reconstruction,

fast algorithm, Slepian functions, prolate spheroidal wave functions

1. INTRODUCTION

Nonuniform sampling has been used in many engineering systems

for decades. Recently, a type of nonuniform sampling, the signal-

dependent event-based sampling, receives an increasing attention of

researchers in the development of event-driven control [1,2] and sig-

nal processing [3–7]. One of key problems related to nonuniform

sampling is a recovery of an original signal. This process faces a

few general challenges that are discussed in details below.

1) In general, the nonuniform signal reconstruction is modeled by

the expansion

(1)

where called the reconstruction functions are prop-

erly chosen to allow representation of the signal that be-

longs to a certain space . For perfect reconstruction, the func-

tions must be a Riesz basis or a frame for the space

[8]. In the classical model, is assumed to be Paley-Wiener

space, , that is a space of -bandlimited functions with

finite energy. However, real physical signals are often time-

limited, which contradicts their bandlimitedness because of the

uncertainty principle [9]. The symptom of this mismatch is vis-

ible when is used for reconstruction of

time-limited signals because slow time-decay of impedes

modelling a rapid signal suppression.
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2) Reconstruction of a signal according to (1) can be posed as a

linear inverse problem that consists in finding appropriate coef-

ficients to a set of known signal samples . In most of

the recovery algorithms, a system of linear equations is solved

in order to obtain . For a matrix of linear system without any

specific structure (as in [7]), this requires flops where

is a finite number of samples used for truncated recovery.

Also alternative methods, such as recovery using time-varying

filter [10] requires recomputing of coefficients using least-square

method, and solving the linear equations. If the matrix is trans-

formed to the Toeplitz [8] or Vandermonde [5] form, the com-

putational cost is lowered to . Similarly, a direct recov-

ery based on Lagrange formula is of complexity [11].

In [12], the method allowing to recover the signal according to

(1) with a linear complexity is reported but it requires

the use of functions with finite time support which are generally

non-bandlimited.
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Fig. 1. Example of samples time-location in a) uniform sampling, b)

nonuniform sampling - visible gaps and clustering of samples.

3) Nonuniform sampling implies different time intervals between

samples. In the gaps between samples, the signal is recovered

on the basis of neighboring samples. Due to a limited rate of

change of , the values of bunched samples may not differ

much, so the recovery depends on such small differences. The

more clustered samples, the more vulnerable to noise and un-

stable recovery algorithm. With such set of samples, the linear

system of equations becomes ill-conditioned. Several ways of

reducing unstable behavior were presented in [8].

Recently, a signal reconstruction using Slepian functions, known

also as prolate spheroidal wave functions, was proposed [7, 13–16].

Thanks to advantageous time-frequency properties (finite bandwidth

and high concentration of energy in finite time interval), these func-

tions provide a good choice for in equation (1) in terms

of fast suppression of their values in time. Moreover, the set of

Slepian functions forms an orthogonal basis for Paley-



Wiener space, which results in a relatively well-conditioned linear

system, and therefore, a good stability of reconstruction algorithm

[7]. Unfortunately, the signal recovery based on the use of Slepian

functions is still characterized by high computational requirements

for solving an unstructured linear system, , and computing

values of Slepian functions. The property of good time localization

motivated also the authors of [16] who use the Slepian functions as

sampling functions to perform finite number of linear measurements

at sub-Nyquist rate and reconstruct continuous-time signal using the

discrete-time methods of compressed sensing. This idea, however,

cannot be easily applied to the nonuniform sampling, where sam-

pling functions are the .

In this paper, we show an alternative usage of Slepian func-

tion allowing a reduction of high computational demands. Instead

of using all Slepian functions , as in [7], we exploit a

shift-invariant space approach that involves only the zeroth Slepian

function . The linear system of such reconstruc-

tion can be approximated by a sparse matrix, which significantly

reduces computation, yielding algorithm. Furthermore, val-

ues of only one Slepian function need to be evaluated, in contrast

to the method presented in [7, 14], which lowers the overall com-

putational cost of the algorithm. The proposed approach maintains

good properties of representing time-limited signals, and allows to

control the reconstruction error. We also provide the requirements

guaranteeing stability of the recovery algorithm. The paper is orga-

nized as follows. Section 2 presents basics of signal reconstruction

from nonuniform samples using frame theory which is based on ma-

trix inversion. Reconstruction matrices based on and Slepian

functions are compared. Section 3 introduces an original concept of

the reconstruction using shifted Slepian function. The properties of

the proposed algorithm are discussed in Section 4. Numerical results

of reconstruction using a new algorithm are covered by Section 5.

2. RECONSTRUCTION OF NONUNIFORMLY SAMPLED

SIGNALS

Assuming that a finite number of samples are known, the approxi-

mate reconstruction from nonuniform samples can be performed us-

ing by truncating the general expression (1). The signal value

at the time instant which is known due to sampling operation may

be, according to (1), presented as:

(2)

Let us denote a vector of nonuniform samples as

, a vector of coefficients by

, and a matrix of sampling functions

evaluated at sampling points as . By

successive insertion of for into (1), the

following system of linear equations is obtained

(3)

with a solution

(4)

Knowing a value of the vector , it is possible to reconstruct the

original signal using (1). Now, various choices of can

be discussed. The classical Whittaker-Shannon interpolation offers

a perfect reconstruction of a finite-energy bandlimited signal

from its samples using the famous equation

(5)

where is the sampling period related to the bandwidth of the

signal defined as , and .

In practice, the reconstruction is not perfect because real physical

signals are not strictly bandlimited and the number of samples used

is not infinite as in (5), which results in aliasing and truncation errors.

To alleviate both errors, the reconstruction using the set of

Slepian functions was proposed in [13]. The Slepian functions

are solutions of the following eigenfunction problem

(6)

where is an eigenvalue/eigenfunction index. The functions

possess some unique properties [9, 13, 17]:

1) they have bandwidth equal to B and Fourier transform

given by

(7)

where is bandlimiting operator.

2) the eigenvalue associated with eigenfunction

determines a fraction of total energy inside interval ; the

eigenvalues order is strictly decreasing:

.

3) The energy concentration in the time interval of the

zeroth Slepian function ( ) is the maximum possible

among all functions from space; although they are not

time-limited, the energy outside this interval is very low

4) set constitutes an orthogonal basis both for

and for .

The first four Slepian functions obtained using the algorithm de-

scribed in [17] are presented in Fig. 2. As a basis for a Paley-

Wiener space, Slepian functions can be used as a set of functions

in (1), yielding

(8)

Let us consider a time-limited signal, spread over time interval of a

certain length. When energy concentration interval is set to

be equal to signal length, a good model of time-limited and nearly-

bandlimited signal is obtained [13].

From the perspective of nonuniform reconstruction, it is also ad-

vantageous to use the matrix with elements

rather than with when the sam-

ples are located only in the interval because the set of

Slepian functions is an orthogonal basis both in

and . At the same time, the set of functions

maintains orthogonality only in the inter-

val . The advantage of the reconstruction based on Slepian

functions comes from the fact that the matrix used for nonuniform

reconstruction (see the formula (3)) has a lower condition number if

the basis is orthogonal. This has a positive impact on the stability of

the reconstruction algorithm [7,8].
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Fig. 2. Slepian functions ,
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Fig. 3. Magnitudes of matrix elements in logarithmic scale

( ); reconstruction variants: with Slepian functions

(8), , (left); with functions (5) (right)

Fig. 3 illustrates the magnitudes of elements of reconstruction

matrices built of Slepian functions and functions respec-

tively for exemplary nonuniform pattern of samples shown in the

Fig. 1. The -th row of the matrix contains the vector composed

of the values of the reconstruction function at sampling points

. Note, that values of the matrix elements

depend on reconstruction function used and sampling instants, be-

ing independent of the values of the samples. It is evident, that the

vectors from the first rows of matrix have higher values (and

thereby signal energy) concentrated in the middle. In the matrix

, the values of diagonal elements are dominating , although

off-diagonal elements do not differ much in the order of magnitude.

Such disposition is true for most of the sampling patterns without

large gaps. In general, there are no regions in the matrix

whose elements could be approximated by zero to obtain higher

sparsity. Therefore both matrices and can be classified

as dense, which results in solving the linear system (3) at the cost of

floating point operations [18].

3. SHIFT-INVARIANT SPACE RECONSTRUCTION WITH

SLEPIAN FUNCTIONS

From Fig. 3. one can conclude that sparsity of the matrix cannot

be achieved both for functions and Slepian functions used

as the bases for reconstruction. The only functions with high en-

ergy concentration is the collection of the first few Slepian functions,

. A natural question is if such functions

alone can be used as a basis for a Paley-Wiener space, using shift-

invariant space approach, i.e. reconstruction (1) with set of functions

.

As stated in Section 2, Slepian functions are bandlimited, so for

each there exists such linear transformation that

(9)

or equivalently, in the frequency domain:

Then, from the property (7), is given by

(10)

Let us represent certain bandlimited signal using (5)

and convolve it with

(11)

The next question is if an arbitrary signal can be rep-

resented as . To respond to this question, note

that the following relationships holds in frequency domain:

(12)

To allow representation by (5), must also belong to to

keep (10) valid. To maintain finite energy of , the constraint on

must be imposed

(13)

which is fulfilled as long as for .

The similar result regarding reconstruction on the basis of a bandlim-

ited functions different from was presented more formally

in [19]. Because according to (10) the zeroes of the are re-

lated to the zeroes of , it can be easily seen from Fig. 2,

that only the zeroth Slepian function, , is a valid choice.

Resulting reconstruction formula is

(14)

where . Function has also highest energy

concentration among Slepian functions, so the reconstruction matrix

has the highest possible number of elements with numerical

values close to zero (Fig. 4).

4. ALGORITHM PROPERTIES

4.1. Computational complexity

The matrix after rounding small values towards zero can be

considered as a band matrix with non-zero values present only

in the diagonals. Formula (14) can be used for the substitution anal-

ogous to (2) to obtain the linear system with having

diagonals.
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Fig. 4. Magnitudes of matrix elements in logarithmic scale

( ); reconstruction with Slepian functions using (14),

To solve it, the Gaussian elimination algorithm for band matrices

can be used [18], yielding computational complexity

(15)

If we denote by the number of samples within

the support , then . If the devi-

ations of sampling instants from their uniform positions are low,

, then can be estimated as , where

represents rounding upwards. Decreasing is then advantageous

from the perspective of lowering computational requirements. On

the other hand, the smaller , the higher sidelobe level and therefore

the higher truncation error . This

tradeoff can be seen in Fig. 5 and Fig. 6.

4.2. Numerical stability

Because of the relation (10), low magnitude of in

the region of high frequencies (near ) causes an amplification

of these frequencies in . The energy of the coefficients

can be evaluated (using Parseval identity)

from (12), as

(16)

Therefore, if the reconstructed signal contains high frequen-

cies, the coefficients will have large absolute values.

The prefered signals for the reconstruction should be oversampled,

to avoid the problems with finite precision arithmetic.

The characteristics of the algorithm constrains also a size of the

maximum gap between samples to the width of the

. For larger gaps, the matrix

becomes rank-deficient because there is no sample to provide infor-

mation on the magnitude of one of the basis functions.

5. SIMULATIONS

To test the algorithm operation, a simulation was performed. To

avoid high frequencies in , an example signal was created using

the following formula

(17)

The coefficients were created as i.i.d. realizations of a random

variable . The vector of nonuniform sampling instants was

produced using

(18)
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Fig. 5. Maximum sidelobe level, of against
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Fig. 6. Sidelobe level of normalized Slepian function,

against

where random variable was chosen to be independent uniformly dis-

tributed to maintain moderate size of gaps

between samples. Finally, the algorithm solving the equation

was run and then (14) was used for reconstruction of

. A few sets of parameters and were tested to estimate rela-

tion between truncation and reconstruction error .

This error along with the total mean error are presented respectively

in Table 1 and Fig. 7. As follows from Table 1, the reconstruc-

tion error is of the same order of magnitude as the values of

truncated sidelobes of function used for reconstruction.

6. CONCLUSIONS

In this paper, we present a newmethod for reconstructing a continuous-

time bandlimited signal from its nonuniform samples using the

shifted Slepian function. In comparison to existing algorithms, the

proposed method is characterized by the lowest computational re-

quirements, . Due to its special numerical properties, it is
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Table 1. Mean reconstruction error and maximum sidelobe level of
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Fig. 7. Reconstruction error

suitable for the reconstruction of oversampled signals. The simula-

tion results show that the reconstruction error can be controlled by

choosing desired value of the parameter defining the interval of en-

ergy concentration in the reconstruction function , and of

the parameter , which sets the interval of truncation. The

proposed approach yields approximate reconstruction offers of ban-

dlimited function with a set approximated by a set of time-limited

kernels , with flexible control of reconstruction

error and computation complexity. The relevant problem for further

research is to derive an analytical expression for reconstruction error

using truncated representation. Another future research task is the

problem of improving effectiveness of evaluating Slepian function

, possibly by an approximation using polynomials or a

splines.
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[6] D. Rzepka and M. Miśkowicz, “Recovery of varying band-

width signal from samples of its extrema,” in Proc. of 17th

IEEE Conference on Signal Processing Algorithms, Archi-

tectures, Arrangements, and Applications SPA 2013, Pozna,

2013, pp. pp. 143–147.

[7] S. Senay, Oh J., and L. F. Chaparro, “Regularized signal recon-

struction for level-crossing sampling using slepian functions,”

Signal Processing, vol. vol. 92, no. 4, pp. 1157–1165, 2012.

[8] T. Strohmer, “Numerical analysis of the nonuniform sam-

pling problem,” Journal of Computational and Applied Math-

ematics, vol. 122, no. 1, pp. 297–316, 2000.

[9] D. Slepian and H.O. Pollak, “Prolate spheroidal wave func-

tions, fourier analysis and uncertainty, i,” Bell System Techni-

cal. Journal, vol. 40, pp. 4364, 1961.
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