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ABSTRACT

This paper introduces a new universal steganalysis frame-
work. The required image features are extracted based on
the generalized autoregressive conditional heteroskedasticity
(GARCH) model and higher-order statistics of the images.
The GARCH features are extracted from non-approximate
wavelet coefficients. Besides, the second and third order
statistics are exploited to develop features very sensitive to
minor changes in natural images. The experimental results
demonstrate that the proposed feature-based steganalysis
framework outperforms state of the art methods while run-
ning on the same order of features.

Index Terms— GARCH Model; Steganalysis, Higher
Order Statistics

1. INTRODUCTION

Steganography techniques are developed to conceal the ex-
istence of the secret message during a seemingly normal
communication, without raising any doubt for the observers.
On the other hand, steganalysis methods are simultaneously
evolved to combat this threat and detect the abuse of digital
media.

In order to design a general blind steganalyzer, sev-
eral steganographic methods are applied to a collection of
the training images. Afterwards, some appropriate features
which represent a digest of the total information of the images
are extracted. At the next step, classifiers are applied to find
the optimum classification boundary between the cover and
stego images based on the feature values extracted from the
cover and stego training images. New images are classified
as cover or stego images, by simply comparing the feature
values to the classification boundary. Therefore, there are
two important steps for every universal steganalyzer, namely,
feature extraction and classification.

The first important stage of every steganalyzer is to extract
appropriate features. These features must be designed sophis-
ticatedly to reflect every subtle modification of the original
image. The main goal of this paper is to find a set of these
appropriate features based on the generalized autoregressive
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conditional Heteroskedasticity (GARCH) model and the sec-
ond and third order statistics of the images in both the time
and transfer domain.

As mentioned in previous paragraph, the first set of fea-
tures is based on the GARCH modeling. Autoregressive
conditional heteroskedasticity (ARCH) processes were in-
troduced by Engle in 1982 [1]. The samples of the ARCH
processes are zero-mean and serially uncorrelated with con-
ditional variances depending on the previous samples. Boller-
sev in 1986, introduced a generalized ARCH model called as
GARCH [2]. In the GARCH model, conditional variances
are not only dependent to the previous sample values, but
also to their conditional variances. Although this model had
been essentially developed to analyze the financial time se-
ries [1, 2], it has been shown recently that it is an appropriate
tool to model the non-approximate wavelet coefficients with
heavy-tailed and non-stationary distributions [3].

In this paper, we apply the GARCH model in the wavelet
domain to extract features boosting the steganography foot-
prints. The other set of features are extracted based on the
second and third statistics of images in both the time and
transfer domain. These types of features have been already
exploited in steganalyses literature offering significant results
[4, 5]. The next step to design a blind steganalyzer is to select
the suitable classifier. Here, we choose the ensemble classifier
because of its simplicity and efficiency [6]. This classifier de-
creases the complexity of the classification algorithm, while
keeps the ability of dealing with the large number of features
offering almost the same performance.

2. GARCH MODEL

Let ϵt represent a 1D stochastic process with zero mean. We
define GARCH(p, q) for ϵt as below :

ϵt =
√
htηt; ηt ∼ N(0, 1); t = 1, 2, ..., tend

ht = k +

p∑
i=1

αiht−i +

q∑
j=1

βjϵ
2
t−j (1)

where ηt is a normal process independent of ht with zero
mean and unity variance, ht denotes the conditional variance
of ϵt and k, αi’s and βj’s are GARCH parameters that should



be estimated. Let ψt−1 denote all information until t− 1:

ψt−1 = {ϵ0, ϵ1, ..., ϵt−1, h0, h1, ..., ht−1}
⇒ ϵ|ψt−1 ∼ N(0, ht) (2)

In order to estimate the GARCH parameters, we use the max-
imum likelihood (ML) estimation. Suppose that we want to
apply the GARCH model to the process of yt. For this sake,
we define the zero mean process of ϵt as below:

ϵt = yt − rt.b; ϵt =
√
htηt

rt = [yt−1, yt−2, . . . , yt−M ]

ψt−1 = {y0, y1, . . . , yt−1, h0, h1, . . . , ht−1}
b = [b1, b2, . . . , bM ]

t = {1, 2, . . . ,M,M + 1, . . . , tend} (3)

where rt and b are the vectors of explanatory variables and
unknown parameters respectively. Therefore, we need to es-
timate the vector b as well. We can write:

f(yt|ψt−1) =
1√
2πht

exp(− (yt − rt.b)
2

2ht
) (4)

ht = k +

p∑
i=1

αiht−i +

q∑
j=1

βj(yt−j − rt−j .b)
2 (5)

Then, the Likelihood function is formed as below:

LF (γ) =
N∏
t=1

f(yt|ψt−1); γ = {k, α1, ..., αp, β1, ..., βq,b} (6)

We find the parameter set γ that maximizes the likelihood
function. Having this optimized parameter set found, the
GARCH model can be established completely.

3. FEATURE EXTRACTION BASED ON GARCH
MODEL

In this Section, we show that the variances of the GARCH
model can be efficiently employed as our steganalysis fea-
tures. It is noteworthy that nearly all the steganographic algo-
rithms can be modeled as below:

H0 : yk = Sk k = 1, 2, ..., n

H1 : yk = Sk + nk k = 1, 2, ..., n (7)

where nk is the additive noise added to the pixel value of Sk

due to the embedding and yk are the pixels of the received
image and n is the number of total image pixels. The other
assumption here is to model the additive noise as a random
variable of zero mean Gaussian distribution. When the em-
bedding is applied to the transform domain such as discrete

cosine transform (DCT), the effect of this additive noise back
in the time domain is well modeled with a zero mean Gaus-
sian distribution of variance σ2

0 , i.e. nk ∼ N(0, σ2
0). In order

to setup a framework in which we are capable to exploit the
above-mentioned analyzes, the received image is transformed
to the wavelet domain using the Haar or the other filter types.
In this domain, we can assume an approximate distribution
for the image (S), which enables us to make decision based
on detection and estimation techniques. However, since the
variance of the additive noise is not large enough, we are in-
terested in the subbands with the least power because in there,
the variance difference of theH0 andH1 hypotheses are large
enough to let us separate them efficiently.

According to the above-mentioned discussion, approxi-
mation subband of the wavelet transform is not useful for our
application. However, the other subbands are possible can-
didates since they include highpass filtering and lowering the
energy of the image. Applying the wavelet decomposition to
each of these non-approximate subbands, results in the sig-
nals with lower energy. Working on the horizontal, vertical,
and diagonal subbands, we come to a total number of 36 sub-
bands in the second and third level of decomposition. These
36 subbands comprise of 9 and 27 non-approximation sub-
bands from the second and third level of the wavelet decom-
position respectively.

Now we rewrite the hypotheses in each new subband:

H0 : yk = Sk, σ2
yk

= σ2
sk

H1 : yk = Sk + nk, σ2
yk

= σ2
sk

+ σ2
0

k = 1, 2, ..., n (8)

where each Sk is assumed to be a random variable with Gaus-
sian distribution and the variance of σ2

sk
. Although we do not

need σ2
sk

here, it is achievable by having σ2
yk

known accord-
ing to the GARCH model and σ2

0 .
Now we apply the GARCH model to yk’s to find the con-

ditional variances and use the ML estimation for decision
making.

H0 : f(y|H0)

= f(y1|H0)f(y2|y1,H0)...f(yn|y1, y2, ..., H0)

H1 : f(y|H1)

= f(y1|H1)f(y2|y1,H1)...f(yn|y1, y2, ..., H1) (9)

Then the decision is made based on (10):

f(y|H0)
stego
≶

cover
f(y|H1) (10)

According to the GARCH model, we know that the distribu-
tions of the above functions are all Gaussian:

f(y1|Hi) ∼ N(0, σ2
y1
)

f(y2|y1,Hi) ∼ N(0, σ2
y2
)

. . .

f(yn|y1, y2, . . . , Hi) ∼ N(0, σ2
yn
) (11)



We see from (11) that the GARCH variances are very criti-
cal to the decision making process. This verifies our previ-
ous idea to choose them as an appropriate feature set. By the
way, the large number of variances (which is linearly depen-
dent on the size of the subbands) might impose considerable
complexity to our steganalysis framework. We know that the
GARCH model parameters, i.e. αi’s, βj’s and k, are more
limited in number comparing to the variances. They convey
also the same amount of information. Therefore, it will be
reasonable to replace the variances of each subband with its
GARCH parameters as the feature set.

GARCH(1, 1) is a prevalent and efficient model to which
we stick here. As a result, three features are extracted from
each subband giving the total number of 36 × 3 = 108
GARCH features.

4. FEATURE EXTRACTION BASED ON THE
SECOND AND THIRD ORDER STATISTICS

4.1. Basics

The second or third order statistics reflects the density func-
tion regarding to the co-occurrence of two or three different
image pixel values. One important challenge of using higher
order statistics is their large number. One idea is to consider
the differences between consecutive pixels rather than them-
selves, as mentioned in [4]. In this case, we can restrict the
values of statistics to the range of [−T, T ] in order to limit the
number of second order statistics.

In the next equations, we denote the original matrix with
F , which can be the image itself, or its transformed version in
the quantized DCT or wavelet subbnads. We also define the
difference matrix D which its entries are difference of con-
secutive entries of the original image. We define and use four
types of difference matrices in our work. Suppose that F i,j is
theF matrix when shifted by i rows to the right and j columns
down. The horizontal, vertical, diagonal and minor diagonal
difference matrices are defined based on (12):

Dh = F − F 1,0

Dv = F − F 0,1

Dd = F − F 1,1

Dh = F − F 1,−1 (12)

Now, we have Dh, Dv , Dd and Dmd with entries limited
to the range of [−T, T ] from which we want to extract the
second order statistics. While the joint second order density
function is considered here as the statistics, one can choose
the conditional distribution as well. Assuming that M and
N represent the number of rows and columns of the origi-
nal image, the joint distribution function for Dh is calculated
as below. Similar processes can be done for the other three

matrices.

NJh
u,v = Pr

(
Dh

i,j+1 = u,Dh
i,j = v

)
∑

i

∑
j δ(Dh

i,j+1=u,Dh
i,j=v)

M×(N−1) ;u, v ∈ [−T, T ] (13)

NJ represents the neighboring joint density function and has
(2T + 1)2 number of entries. In order to further reduce the
number of features, NJ1 and NJ2 are defined and used in
our work:

NJ1
u,v =

NJh
u,v +NJv

u,v

2

NJ2
u,v =

NJd
u,v +NJmd

u,v

2
(14)

NJ1 and NJ2 have (2T + 1)2 entries too. The third order
horizontal statistics are derived from Dh in a similar way to
(13). The same process is applied to the other three matrices.

NJh
u,v,k = Pr

(
Dh

i,j+2 = u,Dh
i,j+1 = v,Dh

i,j = k
)

∑
i

∑
j δ(Dh

i,j+2=u,Dh
i,j+1=v,Dh

i,j=k)
M×(N−2) ;

u, v, k ∈ [−T, T ] (15)

NJ has (2T +1)3 entries here, thus we reduce the number of
features in a similar way to the second order statistics:

NJ1
u,v,k =

NJh
u,v,k +NJv

u,v,k

2

NJ2
u,v,k =

NJd
u,v,k +NJmd

u,v,k

2
(16)

NJ1 and NJ2 have also (2T +1)3 entries. Since the process
explained above is referred later, we summarize it in the func-
tion NJ(Order, T ). The input to this function is the original
matrix F and outputs are NJ1 and NJ2, respectively. The
order equals two or three and T is the threshold for clipping.
In the next Sections, we discuss about feature extraction based
on NJ’s in the time and DCT domain.

4.2. Time Domain Feature Extraction

According the results of [5], we use NJ(3, 3) in the time do-
main leading to a number of 2× (2× 3 + 1)3 = 686 features
which are called SPAM feature set [5]. One half of these fea-
tures represent the horizontal and vertical dependencies while
the other half describes the correlation in diagonal and minor-
diagonal directions.

4.3. DCT Domain Feature Extraction

Considering the works presented in [4] and [7], three types of
the second order features are extracted. These three sets are
explained in the following subsections separately.



4.3.1. Features Extracted from the Whole DCT Coefficient
Matrix

In this case, we regard the matrix of quantized DCT coeffi-
cients as F which is defined in the Section 4.1 and extract the
D andNJ matrices in four directions similarly. For this sake,
we considerNJ(2, 6) which leads to a set of 2×(2×6+1)2 =
338 features.

4.3.2. Features Extracted from Interblock Correlation

These features are extracted through considering the DCT
8 × 8 blocks as the F matrix. For each block, D and NJ
matrices are calculated individually. Apparently, this process
results in a very large number of matrices. In order to produce
manageable results, we average over all matrices. Thereafter,
we have NJ1 which is the outcome of averaging over all
NJ1

1 ,NJ1
2 ,. . . ,NJ1

L matrices, where L stands for the number
of 8×8 blocks. Likewise, theNJ2 matrix is calculated. Since
dependencies are considered only inside blocks, this method
is called interblock correlation. Here, we choose NJ(2, 4)
which gives a number of 2× (2× 4 + 1)2 = 162 features.

4.3.3. Features Extracted from Intrablock Correlation

In this case, we put certain entries (frequencies) of all 8 × 8
blocks excluding the first entry (DC coefficient) together to
form a set of 63 new F matrices. The D and NJ matrices
are calculated similar to the former sections. The number
of matrices is reduced by averaging over all of them simi-
lar to the previous section. For example, we have NJ1 as
the average over NJ1

1 , NJ
1
2 , . . . , NJ

1
63 this time. Since the

similar frequencies in different blocks are considered in this
method, it is called intrablock correlation. Here, we again
choose NJ(2, 4) which results in 162 features. All extracted
features discussed above result in totally 1456 features.

5. SIMULATION RESULTS

We set up our steganalysis framework based on the features
derived in Sections 3 and 4, and the ensemble classifier, to an-
alyze a variety of steganographic methods in the both time and
transform domain. 4000 images of the BOSSbase database
[8] are used for the training and test stages. All images are
cropped in case, to the size of 256×256 with the central pixel
remaining the same. One half of the images are chosen ran-
domly for the training phase, while the results are derived by
testing the classifier over the other half. The comparison cri-
terion is the minimum error probability (PE) defined in (17):

PE = min
PFA

1

2
(PFA + PMD(PFA)) (17)

PFA and PMD stand for the probabilities of the false
alarm and missed detection. The performance of the pro-
posed steganalyzer is examined for several steganography

Table 1. Error Probability Performance Comparison
Method rate CHEN CC-PEV SPAM CCC Proposed

LSBM 25 % - - 0.280 - 0.290
100 % - - 0.113 - 0.112

LSBMR 25 % - - 0.285 - 0.307
100 % - - 0.160 - 0.150

HUGO 100 % - - 0.300 - 0.290
F5 5 % 0.240 0.100 0.245 0.115 0.137

20 % 0.003 0.003 0.004 0.003 0.002
nsF5 5 % 0.157 0.195 0.365 0.217 0.175

20 % 0.004 0.004 0.085 0.005 0.003
MB1 5 % 0.122 0.057 0.285 0.085 0.070

20 % 0.008 0.008 0.040 0.005 0.007
MB2 5 % 0.247 0.230 0.282 0.302 0.167

20 % 0.020 0.009 0.050 0.060 0.005
YASS 5 % 0.360 0.362 0.300 0.367 0.288

20 % 0.300 0.245 0.210 0.305 0.165

techniques. Embedding rates are presented in bit per pixel
(bpp) and bit per AC coefficient (bpac) for the time and
frequency domain methods, respectively. In the following,
we compare the performance of the proposed steganalysis
framework with the state of the art schemes. The first scheme
is the steganalyzer proposed by Chen in 2008 which works
based on 486 features [7]. CC-PEV steganalyzer introduced
in 2007 and improved in 2009 [9], is the second comparing
method which exploits a set of 548 features for the sake of
classification. The third steganalyzer is the SPAM feature set
presented in 2010 with 686 features [5]. Introduced in 2011,
is the CCC steganalysis framework which consists of 48600
features based on the Rich Model [10]. The CHEN, CC-PEV
and CCC steganalyzers are useful just for transform embed-
ding domain but SPAM steganalyzer is suitable for both the
time and transform domain embedding methods.

Performance of these steganalyzers are compared in terms
of minimum error probability in Table 1 for several time and
transform domain embedding techniques. Outcomes show
that the proposed framework offers good performance almost
for all cases in the transform domain techniques and has bet-
ter performance for the time domain ones with higher rate of
embedding.

6. CONCLUSION

A new steganalysis framework using moderate number of fea-
tures have been proposed in this work. The feature set is the
combination of both GARCH model and higher order statis-
tics features in the time and transform domain. The GARCH
model has been used to properly model the heavy-tailed distri-
bution of the non-approximate wavelet or other transform do-
main. Beside the GARCH features, higher order statistics fea-
tures help the steganalyzer to detect those embedding meth-
ods aiming at keeping the first order statistics (histogram, av-
erage, etc.,) as least modified as possible. The experimen-
tal results illustrate that the proposed universal steganalysis
framework outperforms state of the art schemes while run-
ning on the same order of the features.
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