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ABSTRACT

The dissimilarity between the training and test data in
speech recognition systems is known to have a considerable
effect on the recognition accuracy. To solve this problem,
we use density forest to cluster the data and use maximum
a posteriori (MAP) method to build a cluster-based adapted
Gaussian mixture models (GMMs) in HMM speech recogni-
tion. Specifically, a set of bagged versions of the training data
for each state in the HMM is generated, and each of these
versions is used to generate one GMM and one tree in the
density forest. Thereafter, an acoustic model forest is built
by replacing the data of each leaf (cluster) in each tree with
the corresponding GMM adapted by the leaf data using the
MAP method. The results show that the proposed approach
achieves 3.8% (absolute) lower phone error rate compared
with the standard HMM/GMM and 0.8% (absolute) lower
PER compared with bagged HMM/GMM.

Index Terms— ensemble acoustic modeling, density for-
est, cluster-based adaptation, HMM speech recognition

1. INTRODUCTION

Hidden Markov model is the mainstream technology for
speech recognition in both academy and industry communi-
ties. Much research has been conducted for this modelling
method to provide more efficient training techniques [1, 2],
different types of models (e.g. subspace HMM [3]), and
different types of adaptation methods (e.g. supervised and
unsupervised adaptation [4, 5]).

The dissimilarity between the training and test data is one
of the major factors that affect on the recognition accuracy.
Supervised speech recognition adaptation is considered lim-
ited and costly in several applications due to its requirement of
labeled data. However, an unsupervised adaptation represents
an alternative, and would add a considerable improvement to
the speech recognition performance.
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Ensemble machine learning techniques such as the ran-
dom forest have become a very attractive research direction.
At the same time, combining multiple recognition systems
is widely used to improve the recognition performance [6,
7, 8, 9, 10, 11, 12], since, in principle, combining the deci-
sion of multiple models can give a better performance than
only using one. Several attempts have been conducted to use
ensemble approaches for speech recognition [7, 9, 10, 11].
These attempts can be classified into two directions. The
first one focuses on modelling the phonetic decision trees in
the context of context-dependent speech recognition. This is
mainly done by generating a random forest of phonetic deci-
sion trees and using these trees to generate multiple acoustic
models from the training data, and at the recognition phase
the output of each model is calculated and the results are
combined [9]. The second direction focuses on generating
ensemble-based acoustic models. In [10], the authors pro-
posed a cross-validation data sampling approach to generate
multiple training data sets through data sampling, and then
use each of these sets to train one set of acoustic models.
In [11], the authors proposed to use bootstrap and restructur-
ing for hidden Markov acoustic modeling with sparse training
data for low resourced languages . [13] proposed to use a
bagging approach to train several GMMs per state and then
take the average of these GMMs output probabilities. In spite
of the promising results the ensemble-based acoustic models
achieved, they are still restricted to using the bagging princi-
ple only.

The main contribution of this paper is to propose a new
cluster-based adaptation technique for speech recognition by
investigating the applicability of the density forest as an en-
semble data clustering technique combined with maximum
a posteriori (MAP) method to build a cluster-based adapted
GMM in HMM speech recognition. The motivation of us-
ing this approach is to benefit from the robustness of the en-
semble machine learning techniques, not only in generating
multiple models but also in creating a cluster-based unsuper-
vised adaptation, which can improve the performance of the
system.

Using a bagged version of the training data for a state in a



phone HMM, the proposed approach aims to divide this data
into smaller groups using the density forest approach, and
then through MAP adaptation, update a GMM model that is
trained using the bagged version. These cluster-based adapted
models are used to replace the leaf data, generating an acous-
tic model forest. When a new speech frame is presented, the
corresponding likelihood from each tree in the forest is calcu-
lated, and the final likelihood is the average of all trees likeli-
hoods.

This paper is organised as follows: in Section 2, the den-
sity forest and the functions used for information gain calcu-
lation are presented. In Section 3 the maximum a posteriori
method is briefly explained. The proposed approach is pre-
sented in Section 4. In Section 5, the experimental results
on the TIMIT speech database are provided, and section 6
presents the conclusion and future work.

2. DENSITY FOREST

Density forest is an ensemble tree-based clustering ap-
proach [14]. It is considered as an unsupervised version
of the random forest classification technique. The principle
is to grow an ensemble of trees on a random selection of
samples in a training set. While constructing the trees, at
each tree node, randomly selected features is investigated as a
potential predictor that decides the split of the data in the tree.
These features split the data into two parts; each of these parts
is modelled using a density model (e.g. GMM). The splitting
fitness is calculated as the information gain generated by the
splitting. The tree leaves contain subsets of the tree training
data. These data are used to generate prediction models such
as GMMs or to modify a model generated using the whole
tree training data.

Formally, a density forest R is a set of decision trees

R = t1, t2, ..., tntree (1)

where ti is the ith individual tree and ntree is the number of
trees.

Given a bagged version of the training data, each tree in
the forest is trained independently. Given a set of features
F = f1...fn (i.e. the acoustic features of each frame), the jth
node is split by using the feature that maximises the informa-
tion gain:

fj = arg max
f∈Fj

I(Xj , f) (2)

where Fj is a randomly selected feature subset of F at node
j, Xj is the data at node j and I(Xj , f) is the information
gain function.

In the density forest, each tree grows until one of the fol-
lowing conditions is achieved:

1. The maximum depth is reached.

2. The number of samples in the node is smaller than a
threshold.

3. The information gain is smaller than a threshold.

Several splitting criteria exist. In this paper, three of them
are examined for phone recognition task: unsupervised en-
tropy, Kullback-Leibler divergence function and normalised
L2 distance function as described in next subsections.

2.1. Unsupervised Entropy

Suppose we have a collection of data points Xj , one which
GMM λj is trained, we split Xj into two parts XL

j and XR
j

and then use them to train GMMs λLj and λRj , respectively.
Using a feature f and a threshold, the information gain of this
splitting is defined as [14]:

I(Xj , f) = log(|Λ(λj)|)−
∑

i∈L,R

|Xi
j |

|Xj |
log(|Λ(λij)|) (3)

where Λ(λj) is associated covariance matrix with λj and | · |
indicates a determinant for a matrix or the number of data
points (more information about this function can be found
in [14]).

2.2. Kullback-Leibler Divergence

Kullback-Leibler divergence is a mathematical measurement
of the difference between two probability distributions. It is
calculated as:

dKL(p1, p2) =

∫
p1(x) log(

p1(x)

p2(x)
)dx (4)

where p1 and p2 are two probability distributions (i.e. GMMs)
estimated from splittingXL

j andXR
j , respectively. This func-

tion is non-symmetric. In this work, a symmetrised version is
used, which is defined as:

dsKL(p1, p2) = dKL(p1, p2) + dKL(p2, p1) (5)

For Gaussian mixtures, a closed form expression for
dKL(p1, p2) only exists for the number of mixtures M = 1.
For M > 1, dKL(p1, p2) is estimated using stochastic inte-
gration or an approximation as described in [15].

2.3. Normalized L2 Distance

The normalised L2 distance function is defined as [16]:

dnL2 =

∫
(p

′

1(x)− p
′

2(x))2dx (6)

where p1 and p2 are two probability distributions (i.e. GMMs)
estimated from XL

j and XR
j , respectively, and p

′

i(x) =

pi(x)/
√∫

pi(x)2dx is a scaled form of pi(x) to unit L2-
norm.



2.4. The Maximum a Posteriori Method

The maximum a posteriori estimation method is a powerful
approach for updating GMMs [17]. This method was initially
proposed for speaker adaptation in speech recognition. Adap-
tation can be applied to all or to a number of the GMM param-
eters. In this paper, the update is only applied to the means of
GMMs.

Given a set of samples called the adaptation data X =
x1, ..., xT , and the GMM model λ = (wk, µk,Σk)Mk=1, the
adapted mean vector µ́ is calculated as the weighted sum of
the adaptation data and the GMM mean as:

µ́k = akx̃k + (1− ak)µk (7)

where

ak =
nk

nk + r
(8)

x̃k =
1

nk

T∑
t=1

P (k|xt)xt (9)

nk =

T∑
t=1

P (k|xt) (10)

P (k|xt) =
wkpk(xt))∑M
j=1 wjpj(xt)

(11)

where M is the number of mixtures, pi(x) denotes Gaussian
probability and r is a constant controlling the influence of the
prior probability.

3. THE PROPOSED APPROACH

In the proposed approach, multiple training data sets are gen-
erated by bagging the training data for a state in a phone
HMM. Each of these sets is used to generate a GMM model
and a density tree, and then the data at the tree leaves are used
to update the GMM model to generate an acoustic model tree.

In the following, the procedure of training the forest is
described.

• Extract the training data for a state in a phone HMM
using HTK [18].

• For each tree in the forest

– Generate a bagged version of the phone state
training data X.

– Density Tree Builder: a density tree is generated
using the bagged training data X.

– GMM Builder: a GMM is built using X.

– For each leaf in the tree, the data in that leaf is
used to update the corresponding generated GMM
using the MAP method.

Fig. 1. The training procedure of a tree in the density forest.

Figure 1 illustrates the procedure of building one tree. As
a result of the procedure, a set of trees is generated. The
leaves of each tree are GMM models. We call this forest
an acoustic model forest. At the recognition phase, for each
speech frame, each tree in the forest is traversed to retrieve
the adapted GMM (one GMM per tree).Then the likelihood
for each GMM is calculated, and the final frame likelihood is
the average of the likelihoods for all these GMMs (trees).

4. EXPERIMENTS AND EVALUATION

To evaluate the proposed approach, phoneme recognition ex-
periments have been conducted on the TIMIT corpus [19].
The standard training set has been used after excluding all
SA records (i.e. identical sentences for all speakers) as they
might bias certain phoneme contexts and result in artificially
high recognition scores [20]. Results are reported for the core
test set. Speech feature are 12 Mel Frequency Cepstral Coefi-
cients (MFCC) and the logarithm of the energy together with
their first and second temporal derivatives. In training phase,
the 61 phones are mapped to 48 phones and in testing phase,
the 61 phones are mapped to 39 phones [20].

HTK is used to retrieve the training data for a state in



a phone HMM and the transition probabilities using a stan-
dard 3-state context independent monophone HMM recog-
niser with 32 GMM components. The proposed approach has
been compared with two systems, the standard 3-state context
independent monophone HMM recognisers with 32 GMM
components, and a bagging-based ensemble system with 25
generated models where 25 training sets are produced from
the training data for a state in a phone HMM and are used
to build a set of GMMs (a context independent realisation of
system described in [13]).

For the proposed approach, the number of trees in the for-
est is 25, the maximum depth of forest trees is fixed to 10,
and the number of randomly examined features per node is
13. The bagging is done using random sampling with replace-
ment approach.

The phoneme recognition experiments were conducted.
Table 1 presents the phone error rates of the proposed ap-
proach using the three information gain functions and of the
baseline systems. The terms DF-UE, DF-KL and DF-L2 rep-
resent the method proposed using the unsupervised entropy,
Kullback-Leibler divergence and normalized L2 distance as
splitting criteria.

Table 1. Phone error rates of the proposed approach using
each examined information gain function and of the baseline
systems.

Method Phone Error Rate (%) Correctness %
Standard HMM 32.4 73.4
Bagged HMM 29.4 74.3

DF-UE 29.0 74.4
DF-KL 28.6 74.4
DF-L2 29.1 74.0

Table 1 shows that the proposed approach has outper-
formed both standard HMM and the bagged HMM using the
three splitting criteria. The lowest phone error rate has been
achieved using Kullback-Leibler divergence function as an
information gain function, with 28.6% error rate, comparing
with 32.4% error rate for standard HMM and 29.4% for the
bagged HMM. The reason for the difference in performance
between the proposed approach and the bagged HMM one is
that in addition to the bagging, a clustering is performance
and a model adaptation is applied using the data of each clus-
ter. On testing phase, the model is selected according to the
distance similarity between the testing data and the model
data using the density forest.

To check which error aspects have been reduced, a com-
parison between the insertion, deletion and substitution have
been performed between the best result obtained from the pro-
posed approach and bagged HMM as shown in Table 2. The
results show that the main advantage is achieved on insertion
and substitution with 0.9% less. However, the deletion error
has been increased by 0.8%.

Table 2. Insertion, Deletion and Substitution percentage in
the proposed proposed approach and the bagged HMM

Method Insertion % Deletion % Substitution %

Bagged HMM 3.9 7.6 18.1
DF-KL 3.0 8.4 17.2

To examine the effect of the proposed approach on each
phone, a single phone error rate (SER) is calculated for each
of the 48 phones (without mapped to 39 phones ). Table 3
shows the SER values using the DF-KL approach and the
Bagged HMM approach. The results show that most of the
phones (marked in bold) get benefits from the clustering pro-
posed.

Table 3. Single phone error rates of the proposed approach
using KL information gain function and the bagged HMM.

Phone Bagged
HMM

DF-
KL

Phone Bagged
HMM

DF-
KL

aa 0.78 0.6 iy 0.46 0.3
ae 0.74 0.5 jh 0.6 0.31
ah 0.93 0.69 k 0.44 0.28
ao 0.71 0.44 l 0.59 0.45
aw 0.97 0.9 m 0.44 0.32
ax 0.91 0.7 n 0.46 0.37
ay 0.53 0.42 ng 0.73 0.69
b 0.55 0.42 ow 0.57 0.56
ch 0.73 0.73 oy 1 1.19
cl 0.38 0.29 p 0.51 0.43
d 0.71 0.6 r 0.54 0.47

dh 0.68 0.55 s 0.31 0.22
dx 0.57 0.44 sh 0.49 0.25
eh 0.86 0.67 sil 0.07 0.08
el 0.95 0.82 t 0.57 0.37
en 1.14 1.1 th 1.11 1.08
epi 1.06 1 uh 1.07 1.24
er 0.48 0.43 uw 0.72 0.7
ey 0.52 0.39 v 0.59 0.42
f 0.44 0.27 vcl 0.56 0.48
g 0.77 0.79 w 0.47 0.39

hh 0.62 0.44 y 0.88 0.78
ih 0.79 0.67 z 0.62 0.43
ix 0.62 0.56 zh 1.1 1.3

The complexity of the proposed approach can be investi-
gated by studying the relationship between recognition time
and the number of trees. These two factors were found to be
correlated where the complexity is defined as O(N) where
N is the number of trees in the acoustic model forest, which
makes the proposed approach has the same complexity of the
bagged HMM.



5. CONCLUSIONS AND FUTURE WORK

In this paper, a tree-based ensemble method for a cluster-
based adaptation in HMM/GMM phone recognition has been
proposed. We investigated the applicability of the density for-
est as an ensemble data clustering technique combined with
MAP method to build a cluster-based adapted GMM in HMM
speech recognition. As a result, an acoustic model forest is
generated, where each leaf in each tree in that forest repre-
sents one GMM. At the recognition phase, for each frame,
the likelihood from each tree is calculated, and the final frame
likelihood at that state is the average of the likelihoods of
all trees. Three gain functions for building model forest has
been examined, unsupervised entropy function, the Kullback-
Leibler divergence function and the normalised L2 distance
function.

Phone recognition error rates on TIMIT corpus show that
the proposed approach has outperformed both the standard
HMM and the bagged HMM using the three splitting criteria.
The best performance is achieved using Kullback-Leibler di-
vergence as a gain information function for data splitting in
the density forest.

Future work includes investigating the effect of number of
trees on the performance, the usage of different GMM adapta-
tion technique instead of MAP, and finding different strategies
for combining the likelihood than averaging.
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