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ABSTRACT

In many scenarios, a periodic signal of interest is often con-
taminated by different types of noise, that may render many
existing pitch estimation methods suboptimal, e.g., due to an
incorrect white Gaussian noise assumption. In this paper, a
method is established to estimate the pitch of such signals
from unconstrained frequency estimates (UFEs). A minimum
variance distortionless response (MVDR) method is proposed
as an optimal solution to minimize the variance of UFEs con-
sidering the constraint of integer harmonics. The MVDR filter
is designed based on noise statistics making it robust against
different noise situations. The simulation results confirm that
the proposed MVDR method outperforms the state-of-the-art
weighted least squares (WLS) pitch estimator in colored noise
and has robust pitch estimates against missing harmonics in
some time-frames.

Index Terms— Audio signal, harmonic model, pitch esti-
mation, minimum variance distortionless response (MVDR),
maximum likelihood (ML).

1. INTRODUCTION

In audio analysis, the pitch value is closely related to the pri-
mary frequency of vibration (fundamental frequency), e.g.,
the vocal cord vibration for voiced speech signals. Pitch es-
timation is a challenging problem in audio signal process-
ing, e.g., [1–6], and it is important in many speech and au-
dio applications such as coding, enhancement, and separa-
tion. We can model many parts of audio signals using a con-
strained harmonic model which consists of a fundamental fre-
quency, or pitch as it is often referred to, and integer multi-
ples of the fundamental frequency. Observed signals consist-
ing of such a harmonic signal are commonly contaminated
by noise. With the assumption of white Gaussian noise, the
maximum likelihood (ML) and maximum a posteriori (MAP)
estimation methods are commonly used for pitch and model
order estimation, e.g., [1, 4, 7–9]. We here focus on a two
stage procedure, where the pitch is estimated from an uncon-
strained set of frequency estimates to match with the con-
strained harmonic model. This approach is fast and statisti-
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cally efficient even with inefficient unconstrained frequency
estimates (UFEs). Different unconstrained estimators of fre-
quencies have been investigated in [10], e.g., the MUSIC [11],
ESPRIT, [12], NLS [13, 14], and Capon [15, 16].

The Markov-like weighted least squares (WLS) pitch es-
timator in [1] is computationally efficient with good statisti-
cal performance when the noise is white. In this method, the
weights of UFEs relate to the magnitude estimates of the un-
constrained frequencies. The pitch estimate used in the WLS
method of [1] is not optimal for a nonidentical noise variance
across harmonics, e.g., for colored noise. Furthermore, often
in practice, the results of this method suffer from large errors
in the pitch estimation when we have spurious frequency es-
timates and missing harmonics in the unconstrained frequen-
cies [16].

In this paper, we propose a filtering method to obtain the
pitch from UFEs even when the noise is not white. Since an
additive Gaussian noise signal is equivalent to an additive an-
gular noise for a high signal-to-noise ratio (SNR) [17], the
UFEs can be modeled like multiple random variables with a
joint probability density function (pdf), which each have a
normal distribution with a constrained expected value. Thus,
an initial concept of the filtering method is applied to the
UFEs to align the constrained random values with a least
variability. If we do not know the local SNRs, we can as-
sume identical white Gaussian noise across harmonics, and
the minimum-variance unbiased (MVU) estimator [18] is a
fixed filter. These normally distributed random variables may
have different variances related to the reciprocal of the nar-
rowband SNRs [17], and herein, we can estimate the filter
coefficients adaptively based on the noise characteristics with
a linear constraint to satisfy the integer relationship between
the UFEs. Intuitively, we estimate the covariance matrix of
the UFEs, and design an optimal filter to minimize the noise
variance on the UFEs, that is known as the minimum variance
distortionless response (MVDR) estimator. For the particular
case of white Gaussian noise, we design the maximum like-
lihood (ML) estimator from the concept of the MVDR with
identical noise power spectrum across all frequencies. We
see that the ML estimator is equivalent to the WLS estimator
in [1]. As a result, because we design the constrained MVDR
filter using the noise variance estimates of the UFEs, the pro-
posed method estimates pitch optimally in the presence of dif-



ferent types of Gaussian noise. Moreover, the MVDR method
is robust against missing some harmonics, since this phenom-
ena is encompassed in the statistics estimates.

The rest of this paper is organized as follows. In Section
2, we introduce the harmonic signal model. Then, we propose
the MVDR filter to estimate the fundamental frequency from
unconstrained frequency estimates in Section 3. Later on, in
Section 4, experimental results are reported. In closing, the
work is concluded in Section 5.

2. PROBLEM FORMULATION

2.1. Signal model

We model harmonic signals as the sum of analytic sinusoids
which can be applied on real signals through the Hilbert
transform. A harmonic signal consists of L sinusoids with
the fundamental frequency ω0 ∈ (0, π], real magnitudes
a = [α1, α2, . . . , αL ]T , and phases ϕl ∈ (−π, π] for
l = 1, . . . , L like

s(n,θ) =

L∑
l=1

αl e
j (lω0n+ϕl), (1)

where the superscript T is the transpose operator, and j =√
−1. The harmonic signal is parameterized by the vector

θ = [ω1, α1, ϕ1, . . . , ωL, αL, ϕL ]T . We only consider the
harmonic frequencies which can be seen that

Ω = [ω1, ω2, . . . , ωL ]T = dL ω0, (2)

where ωl = lω0, and dL = [ 1, 2, . . . , L ]T is the constraint
vector. We assume that the observed signal x(n) of the signal
source s(n,θ) is contaminated by Gaussian noise v(n) with
complex value and zero mean, i.e.,

x(n) = s(n,θ) + v(n). (3)

For white Gaussian noise, the real and imaginary compo-
nents of v(n) are uncorrelated and have an equivalent vari-
ance σ2/2. At a high narrowband SNR, i.e., SNR(ωl) =
α2
l /σ

2 � 1, the harmonic frequency ωl is perturbed with a
real angular noise ∆ωl(n) = v(n)

αl
sin(lω0n + ϕl), which

has a normal distribution with zero mean and variance
E{(∆ωl)2} = 1/(2 SNR(ωl)) [17], where E{·} denotes
the statistical expectation. Therefore, we can approximate the
complex signal model (3) like

x(n) ≈
L∑
l=1

αl e
j (lω0n+∆ωl(n)+ϕl). (4)

Ideally, white Gaussian noise has a homogeneously dis-
tributed power spectrum Φω = σ2 across frequencies ω ∈
[0, π]. On the other hand, colored noise has an inhomoge-
neous distributed power spectrum Φω , that results in different

angular noise across harmonics with the variances

E{(∆ωl)2} =
1

2 SNR(ωl)
=

Φωl

2α2
l

. (5)

We assume that we have a set of unconstrained frequency
estimates (UFEs) Ω̂ = [ ω̂1, ω̂2, . . . , ω̂L ]T , which are es-
timated from the signal vector [x(n), x(n + 1), . . . , x(n +
N − 1) ]T . We model these UFEs with the equivalent linear
constrained harmonic model in (2) that is contaminated by
Gaussian noise. Therefore, the harmonic frequency estimates
can be written like

Ω̂ = Ω + ∆Ω = dL ω0 + ∆Ω, (6)

where ∆Ω = [ ∆ω1, ∆ω2, . . . , ∆ωL ]T are additive angular
noise across harmonics. For a high number of samples, the
UFEs are asymptotically unbiased, i.e., limN→∞ E{Ω̂} = Ω,
with the covariance matrix

Φ∆Ω = E{∆Ω ∆ΩT }
= E{(Ω̂− E{Ω̂})(Ω̂− E{Ω̂})T }. (7)

Independent UFEs would be implicitly uncorrelated, i.e.,
E{∆ωi∆ωk} = 0 for i 6= k, when harmonics are not close to
each other and the narrowband SNRs are high enough. Con-
sequently, the covariance matrix of the angular noise vector
in such situations can be shown to be

Φ∆Ω = diag
{[ Φω1

2α2
1

,
Φω2

2α2
2

, . . . ,
ΦωL

2α2
L

]}
, (8)

where diag{·} denotes the diagonal matrix formed with the
vector input along its diagonal. For close harmonics, which
are not well-separated, with low narrowband SNRs, never-
theless, there is a cross-correlation between harmonics, i.e.,
E{∆ωi∆ωk} 6= 0.

3. PROPOSED METHOD

We have already formulated the relationship between the
UFEs of a harmonic signal and the pitch (fundamental fre-
quency) ω0. In this sense, pitch can be interpreted as the slope
of the line that fits the UFEs. We propose a filtering method
to seek an unbiased pitch estimate with a minimum variance
via the line fitting with the determined constrained vector dL.
Hence, we apply a filter h ∈ RL to estimate the pitch value
from the set of UFEs as

ω̂0 = hT Ω̂

= hTdL ω0 + hT∆Ω. (9)

With the distortionless constraint that hTdL = 1, the mean
squared error (MSE) of the unbiased estimator is given by

MSE[ ω̂0 ] = E{(ω̂0 − ω0)2}
= E{(hT∆Ω)(∆ΩTh)}
= hTΦ∆Ωh. (10)
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Fig. 1. An example of the fundamental frequency estimate
using the MVU, ML, and MVDR filtering methods (red dots)
from UFEs (blue dots) with L = 5 at the presence of colored
Gaussian noise.

To minimize the variance of the pitch estimates, the optimal
filter is given as the solution to the following problem:

min
h

hTΦ∆Ωh (11)

subject to hTdL = 1.

Using the method of Lagrange multipliers, the minimum vari-
ance distortionless response (MVDR) filter is then given by
[15]

hMVDR = Φ−1
∆ΩdL(dTLΦ−1

∆ΩdL)−1, (12)

and inserting the proposed optimal filter in the MSE expres-
sion in (10) yields

hTMVDRΦ∆ΩhMVDR =
1

dTLΦ−1
∆ΩdL

. (13)

If we assume identical narrowband SNRs across the harmon-
ics, we can obtain a simple and signal independent, minimum-
variance unbiased (MVU) filter design:

hMVU = dL(dTLdL)−1. (14)

In the particular case of statistically independent UFEs, which
are corrupted by white Gaussian noise with the variance σ2,
we can express the inverse of the diagonal covariance matrix
simply as

Φ−1
∆Ω =

2

σ2
diag{α2

1, α
2
2, . . . , α

2
L }, (15)
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Fig. 2. MSEs of pitch estimates of a harmonic signal versus
SNR levels of colored noise in dB.

in (12). As a result, the maximum likelihood (ML) estimator
is

hML =
1∑L

l=1(lαl)2
[ α2

1, 2α2
2, . . . , Lα

2
L ]T , (16)

which is the same as the weighted least squares (WLS)
method in [1].

4. SIMULATION RESULTS

We evaluate the performance of the proposed filtering method
to estimate the fundamental frequency from a set of uncon-
strained frequency estimates, and measure the MSE by aver-
aging the squared error in multiple trials. First, we simulate
a set of unconstrained estimates of a harmonic signal with
nonidentical magnitudes, which are contaminated by colored
Gaussian noise with exponentially decreasing variances, and
then compare the results of the MVU, ML, and MVDR filters.
In the other experiments, we estimate the unconstrained fre-
quencies of sinusoids from a simulated harmonic signal using
the subspace orthogonality method [4]1 based on the MUSIC
method [11], and then compare the results in different SNRs
and number of harmonics. Finally, we evaluate the proposed
method to estimate the fundamental frequency from UFEs of
a real noisy trumpet signal to show the applicability of the
proposed method on real signals.

In practice, the covariance matrix Φ̂∆Ω(n) in a time in-
stance n is derived fromM number of UFEs Ω̂(n−m), where
m = 0, 1, . . . ,M − 1, and the expectation is estimated by
ensemble averaging. Indeed, the fundamental frequency is
assumed stationary along M time frames. Moreover, we as-
sume that the covariance matrix is full rank in the optimal

1The MATLAB implementation of the method is available online at [19].
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Fig. 3. MSEs of pitch estimates of a harmonic signal, con-
taminated by colored noise in SNR = 20 dB, versus number
of harmonics.

filter design (12), and this can be guaranteed by choosing a
minimum number of time frames as M ≥ L. Figure 1 shows
the results of 500 fundamental frequency estimates. The re-
sults show that the MVDR filter outperforms the MVU and
ML filters in colored noise, although we do not have initial
estimates during n = 1, 2, . . . ,M for the MVDR pitch esti-
mator, i.e., M = 50.

In Figure 2, we show the MSE of the pitch estimates,
when conducting 200 simulations, using a synthetic signal
consisting of L = 5 complex sinusoids with ω0 = 0.1250π
and magnitudes a = [1, 1.5, 2, 1.5, 1]T and uniformly dis-
tributed random phases, contaminated by colored noise,
which is generated by passing a complex white Gaussian
noise with zero mean and unit variance through an autore-
gressive (AR) filter given by 1/(1 − 0.1z−1 + 0.3z−2) in
Z-transform. In the subspace orthogonality method, the
method which we applied to estimate UFEs, the model order
is assumed to be known, and the sampling window and the
length of the discrete Fourier transform (DFT) respectively
are N = 128 and F = 65,536 samples. In the SNR = 20 dB,
we also evaluate the results of the pitch estimates of the same
signal with different number of harmonics, and we choose
magnitudes like a = hann(L) + 1L that is the function of
the Hanning window plus all-ones column vector of size L.
Although with a high number of harmonics, the SNR of the
first harmonic is decreased, assuming the other harmonics as
noise, Figure 3 indicates that pitch estimates will be more
robust for a signal with a high number of harmonics. In gen-
eral, the results of the constrained-harmonic methods perform
better than the results of the lowest frequency estimate ω̂1,
and the MVDR filter outperforms the ML, which is the same
as the WLS method [1].

We also conduct an experiment on a trumpet signal which

Fig. 4. Spectrogram of a trumpet signal contaminated by col-
ored noise (top), and pitch estimates using the first element of
UFE, and the ML and MVDR methods (bottom).

is contaminated by colored noise in SNR = 30 dB, and the
sampling frequency fs is 8.0 kHz. We estimate model order
using the subspace orthogonality method [4], and then esti-
mate UFEs as in the previous simulations. Figure 4 indicates
that the first harmonic estimate is missed in some time frames
and the second harmonic is selected instead. As a result, the
ML pitch estimates are wrong in these time frames, while the
proposed MVDR method estimates pitch right.

5. CONCLUSION

The WLS method has been proposed as an optimal solution
for the pitch estimation in [1] with the assumption of white
Gaussian noise which is not often valid in real scenarios, e.g.,
in colored noise. In this paper, we have proposed the MVDR
pitch estimator by imposing the constraint of integer harmon-
ics to apply on UFEs. We have presented that the MVDR
estimator is designed depending on narrowband SNRs of har-
monics, which can be estimated from statistics of UFEs. For
white Gaussian noise, we have derived the ML estimator from
the MVDR estimator, that is the same as the WLS pitch esti-
mator. Then, we evaluated the performance of the proposed
method in simulations by using synthetic and real harmonic
signals. The results show that the proposed method outper-
forms the WLS method in colored noise, even when some
estimates of harmonics are missed.
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