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ABSTRACT
The paper proposes a new Maximum Entropy estimator for
non-parametric density estimation from region censored ob-
servations in the context of population studies, where stan-
dard Maximum Likelihood is affected by over-fitting and non-
uniqueness problems. The link between Maximum Entropy
and Maximum Likelihood estimation for the exponential fam-
ily has often been invoked in the literature. When, as it is the
case for censored observations, the constraints on the Maxi-
mum Entropy estimator are derived from independent obser-
vations of a set of non-linear functions, this link is lost in-
creasing the difference between the two criteria. By combin-
ing the two criteria we propose a novel density estimator that
is able to overcome the singularities of the Maximum Likeli-
hood estimator while maintaining a good fit to the observed
data, and illustrate its behavior in real data (hyperbaric div-
ing).

Index Terms— Censored observations, non-parametric
maximum likelihood, constrained maxent, regularisation.

1. INTRODUCTION

1.1. Motivation

The density estimation problem addressed in this paper is mo-
tivated by a problem of population analysis: we are inter-
ested on the distribution πθ of the biophysical parameters θ
of a mathematical model [1] for the instantaneous volume of
micro-bubbles flowing through the right ventricle of a diver’s
heart when executing a decompression profile P :

(θ, {P (u)}u≤t)→ B(t, θ, {P (u)}u≤t)).

The problem appears in the context of prevention of decom-
pression sickness (DCS) in deep sea diving: since DCS is
known to be highly correlated with the presence of gas bub-
bles in the blood, ability to correctly predict the probability
that this volume becomes exceedingly high can be used to es-
tablish safety rules that avoid profiles that will be dangerous
for a non-negligeable part of the population.

The instantaneous gas volume B is observed through pe-
riodic measurements of bubble grades G. Since it is usu-
ally accepted that DCS is related to the maximum observed
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grade, only strongly quantified versions of the peak volume
b(θ, P ) = maxtB(t, θ, {P (u)}u≤t) have been recorded:

G(θ, P ) = l⇔ b(θ, P ) ∈ [τl, τl+1[ , l ∈ {0, . . . , L}. (1)

In our case L = 4, and thresholds τ = {τl}Ll=1, where τ0 =
0 < τ1 < · · · < τL < τL+1 = ∞, are assumed known.
Fig. 1 illustrates these definitions. A simplified model with
θ ∈ Θ ⊂ R2 has been used, all other parameters of model [1]
being held fixed. Note that all θ in region Ri

Ri ≡ {θ ∈ Θ : b(θ, Pi) ∈ [τGi , τGi+1[} ,

yield the same observed grade Gi for profile Pi. In Fig.
1 (right) we draw the regions corresponding to the pro-
file P shown on the left. The plot in the centre shows
B(t, θ, {P (u)}u≤t) (thresholds τ are indicated by the hori-
zontal red lines). A value grade G = 3 corresponds to a value
of θ inside the orange region.

Fig. 1. Left: profile P (t). Centre: instantaneous volume B
(blue) and thresholds (red). Right: regions corresponding to
the 5 possible grades.

The remark above shows that estimation of πθ from ob-
servations {(Gi, Pi)}ni=1 is equivalent to the problem of es-
timating πθ from observation of the set of regions {Ri}ni=1.
In the absence of knowledge about the expected dispersion of
the biological parameters, we estimate πθ non-parametrically,
imposing no constrains on its shape.

1.2. Background

Finding π̂θ, the NPMLE (Non-parametric Maximum Likeli-
hood Estimate) of πθ from censored observations has been
studied by many authors starting with the pioneering formu-
lation of the Kaplan-Meier product-limit estimator [2]. Sev-
eral types of censoring (one-sided, interval) have been consid-
ered since, first for scalar and more recently for multivariate



distributions. The problem assessed here departs from previ-
ous studies in that our (multi-dimensional) censoring regions
can have arbitrary geometry. To emphasise this we speak of
“region-censoring”, instead of “interval-censoring.”

Several facts are known about the NPMLE for interval-
censored observations: (i) its support SNPMLE = {θ, :
π̂θ(θ) > 0} is confined to a finite number K of disjoint
intervals (the so called “elementary regions”): SNPMLE =
∪K`=1E`, E` ∩ Eq = ∅, ` 6= q; (ii) all distributions that put
the same probability mass w` ≡ {πθ(E`)}, ` = 1, . . . ,K
in these intervals have the same likelihood; (iii) there is in
general no unique assignment of probabilities {ŵ`}K`=1 that
maximises the likelihood.

Turnbull [3] has first demonstrated (i), giving an algo-
rithm to find the {E`}K`=1 for the scalar case. Gentleman
and Vandal [4] addressed the multivariate case, showing the
E`’s are determined by the maximal cliques of the intersec-
tion graph of the set of observed regions {Ri}ni=1. We have
shown elsewhere [5] that (i) also holds when the sets Ri
have arbitrary geometry, but that some elementary regions
are now associated to non-maximal cliques of the intersection
graph, requiring a slightly more complex identification of
the sets E` which we do not detail here. Fact (i) shows that
the NPMLE problem can be studied in the K-dimensional
probability simplex SK , since π̂θ(·) is determined only up to
the probability vector ŵ = {ŵ1, . . . , ŵK}. The two types of
“non-uniqueness” of the NPMLE, (ii) and (iii), have been first
pointed out by Turnbull [3]. More recently, they were studied
in detail for the multi-variate case in [4], where the authors
coined the terms representational – (ii) – and mixture – (iii) –
non-uniqueness, further showing that the set of NPMLE’s π̂θ
is a polytope.

1.3. Contributions

Together, the facts presented above indicate that the NPMLE
may frequently exhibit a singular behaviour, in the sense that
its mass is concentrated in a subset of Θ of small Lebesgue
measure, indicating “over-homogenous” population models.
This may lead to dangerous biases in the context of risk as-
sessment, by not taking into consideration the presence of in-
dividuals for which risk can be large.

We propose to remove ambiguity in the estimation of πθ
by relying in the principle of Maximum Entropy (maxent) [6],
that finds the most un-informative density that can explain the
observed data. While maxent has been frequently used for
density estimation from joint observation of empirical mo-
ments of a set of features, its use for region-censored data
arising from strongly quantified data, as we propose in this
paper, is, as far as we know, novel. In particular, the equiv-
alence between regularised maxent and penalised Maximum
Likelihood in the exponential family [7, 8] is lost in our case.
This leads us to formulate the density estimation problem as
finding the most likely constrained maxent density. We com-

pare the proposed estimator to the NPMLE and to the best
fitting maxent solutions, in real data from hyperbaric diving,
showing that the resulting distribution is a better candidate
than NPMLE or maxent alone for the distribution of biologi-
cal parameters in a given population. The Rényi entropy [9] is
a generalised entropy, obtained by considering an exponencial
mean in the postulates that lead to the usual Shannon entropy,
which can also be shown to yield a measure of mutual infor-
mation. By using the Rényi entropy of order two instead of
the Shannon entropy, we are lead to a quadratic optimisation
problem with linear inequality constraints that has an efficient
numerical solution.

The paper is organised as follows. Section 2 presents
NPMLE estimation and shows (section 2.2) that even the most
uncertain NPMLE will in general still present singularities
that are unlikely to occur in a natural population. Section 3
considers Maximum entropy estimators, and presents (section
3.2) the main contribution of the paper, the most likely Rényi
-maxent estimator, discussing relations to previous work and
demonstrating that it leads to better estimates.

2. THE NPMLE

Q(j): partition associated to profile P (j).
Let m denote the number of distinct profiles {P (j)}mj=1 in the

available dataset, and{R(j)
i }

L,m
i=0,j=1 the regions

R
(j)
i =

{
θ ∈ Θ : b(θ, P (j)) ∈ [τi, τi+1[

}
. (2)

Q(j) = {R(j)
i }Li=0 is a partition of Θ, see Fig. 1 (right).

Let Q denote the smallest partition of Θ whose generated σ-
algebra, σ(Q), contains all partitions {Q(j)}mj=1. Denote by

M its size. Let E(j)
i be the set of elements of Q that intersect

R
(j)
i , and LA be the list of regions R(j)

i that contain A ∈ Q.
Since the “elementary regions” {E`}K`=1 are elements of Q,
notations E(j)

i and LE` are well defined.

2.1. Non-Parametric Maximum Likelihood Estimate

Let n be the total number of dives observed. In general, the
same grade G = i has been observed for the same profile
P = P (j) more than once. Let nj be the number of times
P (j) has been executed, and n(j)

i the number of times grade
i has been observed for P (j), such that

∑L
i=0 n

(j)
i = nj and∑m

j=1 nj = n. Denote by f (j) = {f (j)
i }Li=0 the empirical

distribution of the grades in P (j), f (j)
i =

n
(j)
i

nj
. Assuming that

divers have been independently drawn in a population with
probability distribution πθ, the log-likelihood is

L (πθ; {n(j)
i , R

(j)
i }) =

m∑
j=1

L∑
i=0

n
(j)
i log πθ(R

(j)
i ) . (3)



From property (i) of the NPMLE, π̂θ(R
(j)
i ∩ SNPMLE) = 0,

with A the complement of set A, and thus

πθ(R
(j)
i ) =

∑
E∈E(j)

i

πθ(E) = B
(j)
i. w , (4)

where B
(j)
i. is the i-th row of B(j), the (L + 1) × K binary

matrix, with B(j)(i, `) = 1 ⇔ E` ∈ E
(j)
i , and w ∈ SK the

vector of probabilities of the E`’s: {w` = πθ(E`)}K`=1. Eqs.
(3)–(4) show that all πθ leading to the same w have the same
likelihood (property (ii)). In general, see [10], there is no sin-
gle w maximising (3): let ŵ be an NPMLE, then all elements
of P =

{
w, s.t. ∀j, B(j)w = B(j)ŵ

}
are NPMLE’s. We

call P the NPMLE polytope.
Several algorithms have been proposed to maximise (3),

see e.g. [10]. It can be shown that the problem is equivalent to
an optimal design problem, where w plays the role of the de-
sign measure, enabling application of a vast collection of effi-
cient algorithms originating from optimal design for NPMLE
estimation. We rely on a multiplicative algorithm ( [11, 12]):

w
(t+1)
` =

1

n

 m∑
j=1

L∑
i=0

n
(j)
i

B
(j)
i`

B
(j)
i. w(t)

w
(t)
` , (5)

initialized at some strictly positive w(0) until

max
`∈{1,...,K}

1

n

 m∑
j=1

L∑
i=0

n
(j)
i

B
(j)
i`

B
(j)
i. w

− 1

 < δ � 1.

The speed of the algorithm is improved by relying on the
ability to detect the entries of w that will converge to zero, as
shown in [13]. We remark that this multiplicative algorithm
can be applied to the complete partition Q, and will automat-
ically set to zero the entries of w that do not correspond to
“elementary sets” {E`}K`=1. The computationally expensive
analysis of the intersection graph described in [5] is traded
by the need to solve a larger optimisation problem. For the
dataset sizes of our study (m = 19,M = 665), we observed
very fast convergence of (5) for the complete Q.

The result for a total of m = 19 profiles, repeated a num-
ber of times ranging from 12 to 41 is shown on the left of
Fig. 2 (see also top left of Fig. 3), clearly displaying the sin-
gularities that affect NPMLE’s. The white regions have zero
probability mass, and the estimated density has large peaks in
a few small dispersed regions.

2.2. Rényi-maxent NPMLE

Motivated by the context of risk assessment, we rely on the
notion of entropy to select the element of the NPMLE poly-
tope that is the least informative, and that will thus better re-
flect the possible diversity of the population analysed.

All w ∈ P define the same measures f̂ (j) over the parti-
tions Q(j) associated to the profiles P (j). Let π̃θ ∈ P be the

Fig. 2. Left: π̂θ, one NPMLE solution found by (5). Right:
π̃θ, the Rényi-maxent NPMLE. The white regions have zero
probability mass.

distribution maximising the entropy while keeping unchanged
the {f̂ (j)

i }
L,m
i=0,j=1:

π̃θ(R
(j)
i ) = f̂

(j)
i = π̂θ(R

(j)
i ) . (6)

For the Shannon entropy H(π) = Eπ[− log(π(·)] it is well
known (Boltzman theorem) that the maxent estimate of π un-
der a set of constraints of the form Eπ

[
f

(j)
i (·)

]
= γ

(j)
i is

the Gibbs distribution. In our problem, the f (j)
i (·) – usually

called “features” in the context of maxent – are the indica-
tor functions f (j)

i (θ) ≡ 1
R

(j)
i

(θ), showing that the Shannon-
maxent solution is indeed constant inside the elements of Q:

π̃Hθ (θ) =
1

Zλ

m∏
j=1

exp

(
L∑
i=0

λ
(j)
i f

(j)
i (θ)

)
,

where Zλ is a normalising constant (the partition function),
and the {λ(j)

i }
L,m
i=0,j=1 are determined such that (6) are satis-

fied.
Finding the π̃θ for the Shannon entropy is a complex non-

linear constrained optimisation problem. If instead we max-
imise the Rényi entropy of order 2

h2(πθ) = − log

∫
Θ

πθ(θ)
2 dθ ,

also called extension entropy [9], it can been shown [14] that

π̃h2
(θ) =

−1

2

m∑
j=1

L∑
i=0

λ
(j)
i f

(j)
i (θ)


+

,

where [·]+ = max(·, 0) and the λ(j)
i are again such that (6)

are satisfied, showing that the Rényi-maxent distribution is
also constant inside the elements of Q.

Let ŵ be a solution obtained at convergence of (5) and
B the matrix that stacks the B(j), j = 1, . . . ,m. The Rényi-
maxent NPMLE probability vector w̃ is the solution of the
following quadratic program with linear equality constraints,
for which efficient solutions exist

w̃ = argmin
w∈SK

K∑
`=1

1

ν(E`)
w2
` , s.t. Bw = Bŵ .



Fig. 3. Estimates of πθ. Top left: one NPMLE solution found
by (5). Top right: Rényi-maxent NPMLE. Bottom left: Rényi-
maxent π̃ε

?

θ . Bottom right: ML-Rényi-maxent π̃mlθ . White
regions have zero probability mass.

The Rényi-maxent NPMLE computed using the routine quad-
prog of Matlab is displayed in the right of Fig. 2 (3D plot)
and in the top right of Fig. 3 (top view). We can see that the
support of π̃θ is larger than the support of π̂θ, but that restric-
tion of the solution to the NPMLE polytope keeps the density
concentrated in a set of small disconnected regions, with large
areas of zero measure (white areas).

3. REGULARIZED MAXENT

As we saw, even the maxent NPMLE still assigns negligable
or zero mass to most regions of Θ. This is inherent to the
likelihood criterion, that favours the most concentrated den-
sities that are able to explain the observed data. It is easy to
see that the support of an NPMLE density may suffer an im-
portant decrease when a single profile that is executed only
once is added to the dataset, confirming that maximum likeli-
hood estimation is ill-conditioned for censored observations.
Suppose a new profile P (m+1) is added to the dataset, be-
ing executed only once. i.e., n(m+1)

i? = n(m+1) = 1 and
n

(m+1)
i = 0, i 6= i?. Let Q be the partition of Θ correspond-

ing to the profiles with j ≤ m and Q′ the new partition, that
also integrates P (m+1). If R(m+1)

i? intersects an elementary
set E` ∈ Q, such that

E′` = E` ∩R(m+1)
i? ∈ Q′,with ν(E′`)� ν(E`) ,

then E` \ E′` will no longer be an elementary set, shrinking
the support of the NPMLEs.

3.1. Rényi-maxent

To avoid this singular behaviour, we must estimate πθ with a
criterion other than Maximum Likelihood. We propose to es-
timate πθ as the Rényi-maxent distribution that best matches
the observed frequencies for each profile, f (j), which, as we

saw above, can be written as empirical averages of the indica-
tor functions of the elements of the Q(j). Note that while in
the previous section the constraints were determined from the
NPMLE polytope, here they are directly obtained from the
data.

If there exists a π that can satisfy all constraints, the cor-
responding w belongs to the NPMLE polytope P . However,
in general them constraints will be inconsistent and, as in [8],
we consider entropy maximisation under relaxed constraints.
Let ε? ≥ 0 be the smallest value of ε for which there exists a
solution to the problem

π̃εθ = argmax
π

h2(π)

s.t.
∥∥∥Σ(j)−1/2

(
Eπ[f̆ (j)]− f̆ (j)

)∥∥∥
∞
≤ ε, ∀j ,

where Σ(j) is the L × L covariance matrix of the empirical
distribution of the vector f̆ (j) obtained from f (j) by remov-
ing the last entry. Note that the equivalence between relaxed
maxent and penalised likelihood used in [8] does not hold in
our case.

For our hyperbaric dataset, the Rényi-maxent solution
corresponding to ε? is shown in the bottom left of Fig. 3. As
we can see, the support of this best fitting maxent density is
still composed of a number of disjoint regions, and does not
seem a plausible model of a biological population.

3.2. Most likely Rényi-maxent

In [7] duality arguments were used to show that, for the Shan-
non entropy, the solution to the problem above, when the con-
straints f (j)

i on the expected values are all obtained using the
same empirical distribution – derived from an underlying data
set {θi}Ni=1 – is the same as a L1-penalised maximum likeli-
hood estimate of π from data {θi}Ni=1. For the censored data
problem considered in this paper, the constraints are empirical
averages, derived from independent datasets, and this equiva-
lence is lost.

Moreover, since we rely on the L∞ metric to evaluate de-
viation of the modelled distributions (by π̃θ) with respect to
the empirical f (j), and L∞ is not equivalent to the (Rieman-
nian) metric induced by Maximum Likelihood estimation for
the exponential family, we cannot guarantee that L (π̃εθ) <
L (π̃ε

?

θ ), for ε > ε?. In fact, as shown in Fig. 4 that plots the
likelihood of π̃εθ as a function of ε/ε?, this is not true.

We denote by π̃mlθ the most likely Rényi-maxent solution:

π̃mlθ = argmax
π̃εθ, ε>ε

?

L (π̃εθ; {n(j), R(j)}) . (7)

This solution is displayed in the bottom left of Fig. 3. We can
see that the support of π̃mlθ is the entire Θ, with a smoother
distribution of the probability mass, being a more plausible
characterisation of the natural variation within a biological
population.



Fig. 4. Variation of L (π̃εθ) with ε/ε?. Red line: L (π̂θ).

Fig. 5. Top: π̃ε
?

θ ; bottom: π̃mlθ . Left: full covariance matrix;
right: diagonal weighting.

Finally, we remark that it is important to take into account
the correlation between the observed frequencies, opposed to
what is done in [8]. Fig. 5 plots π̃ε

?

θ (top) and π̃mlθ (bottom)
obtained using (7) with the full matrix (left) and using only
the diagonal of Σ(j) (right). As we can see, use of an inappro-
priate metric directed the estimator towards sets of solutions
that have no ability to reproduce the observed frequencies,
and have thus lower likelihood.

4. SUMMARY

The paper studied identification of a probability density from
region-censored observations, with application to modelling
of decompression sickness during hyperbaric diving. We
show that the NPMLE is intrinsically ill-posed, leading to
unstable solutions which are biologically implausible. Ex-
pressing counts of the censored observations as empirical
means of a set of features, we derive the maxent solution that
best approximates the empirical distributions. The degree
of fitting to the observed frequencies is chosen by selecting
the maxent solution that has largest likelihood. The tests
conducted show that the proposed most likely Rényi-maxent
estimator has superior behaviour compared to the simpler
relaxed-constraints maxent, being able to approximate the
observed dataset while at the same time being compatible
with description of a natural population. In particular, our
numerical experiments show that our new algorithm leads
to a distribution estimate that can predict observed grades
well, and can thus be used to detect profiles with high risk of

decompression sickness.
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