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ABSTRACT

This article addresses the problem of signal reconstruc-
tion, spectral estimation and linear filtering directly from
irregularly-spaced samples of a continuous signal (or au-
tocorrelation function in the case of random signals) when
signal spectrum is assumed to be bounded. The number 2L
of samples is assumed to be large enough so that the variation
of the spectrum on intervals of width π/L is small. Recon-
struction formulas are based on PNS (Periodic Nonuniform
Sampling) schemes. They allow for reconstruction schemes
not requiring regular resampling and suppress two stages in
classical computations. The presented method can also be
easily generalized to spectra in symmetric frequency bands
(bandpass signals).

Index Terms— Periodic Nonuniform Sampling, Sam-
pling theory, Signal reconstruction, Nonuniform filtering,
Analytic signal

1. INTRODUCTION

There is a lot of literature about irregular sampling. Recent
one include papers by Selva [1] and Eldar [2] for multiband
signals or Aldroubi (compressed sampling [3], data smooth-
ing and interpolation by cubic splines [4]) or Oppenheim [5]
for sinc reconstruction of bandpass signal using digital filter-
ing.
In these papers, only approximate reconstruction is achieved
but in this paper, exact reconstruction formulas are derived.
In the context of an irregular sampling where the sampling
instants are not regularly spaced but assumed to be known
without error, conditions ensuring that a band-limited signal
can be reconstructed exactly from infinite irregular sampling
exist [6]. They are often approximate as the Lomb-Scargle [7]
or polynomials or spline interpolation methods (for example
[8], [9], [10]) but exact formulas are difficult to find in the
literature. Main theoretical reason is the difficulty to decide
if a Lagrange interpolation formula is or is not convergent.
Indeed, in the irregular case, there is generally no closed-
form expression of the interpolation canonical product and it
is then difficult to know if it is close to zero or not when the
time is close to the infinite (actually, it must not be close to

0). When using such approximate formulas, the residual error
degrades the computation of the Fourier transform providing
the spectrum. Moreover, the analyzed signal spectrum must
often be baseband.
Such a context is met in Fourier transform spectroscopy. A
real example is the SIFTI (Static Infrared Fourier Transform
Interferometer) instrument, supporting a mission for atmo-
spheric pollution sounding from space, by providing high
spectral resolution and high Signal to Noise Ratio spectra
of the atmosphere. Another example is the TROPOspheric
Monitoring Instrument (TROPOMI): it is a spaceborne nadir
viewing spectrometer with bands in the ultraviolet, the vis-
ible, the near infrared and the shortwave infrared. In these
instruments, a part of a light beam is delayed by a moving
mirror and interacts with the direct beam. The interferogram
depends on the mirrors positions and its Fourier transform is
the beam spectrum. These devices can be used in infrared
where emissions of many atmospheric components, like CO,
CH4, O3, NO2 are found. In embarked experiments it is
difficult to use continuous moving mirrors due to mechani-
cal constraints, shocks and accelerations. To mitigate these
problems and obtain more compact devices, in static inter-
ferometers, the moving mirror is replaced by stepped fixed
mirrors [11], [12]. Even if the mirrors are manufactured with
high accuracy (for instance, in devices like TROPOMI of
SIFTI, mirrors have to be manufactured with accuracy below
one micrometer), the resulting sampling in the interferometer
is not perfectly uniform. Nevertheless the distance between
the mirrors faces can be measured with high accuracy.
In other papers, we already gave reconstruction formulas
from irregular sampling for band-limited signals [13], [14].
A FFT (Fast Fourier Transform) was necessary after this in-
terpolation to obtain the power spectrum. In this new paper,
formulas giving at the same time good estimations of the
continuous signal value f (t) at any time instant t and of its
Fourier transform F (ω) without any other computations are
presented and proved. Results are presented in the context of
baseband signals at the Nyquist rate, but it is possible also to
deal with baseband signals at the Landau rate [15], [6]. More-
over, results can be generalized to the case when F (ω) is not
baseband without need of spectral translation (suppressing
an intermediary operation generally used in demodulation



schemes).
Section 2 presents interpolation formulas and simulations
are carried out in Section 3, demonstrating the accuracy of
reconstruction compared to the Lomb-Scarle algorithm and
an interesting application of numerical filtering directly from
irregular samples (example of Hilbert filtering). Section 4
concludes the paper and proofs of formulas are developed in
appendix (Section 5).

2. RECONSTRUCTION FORMULAS

A deterministic square-integrable signal f (t) and its Fourier
transform F (ω) (with bounded support, assumed to be 2π-
length) are related by

f (t) =

∫ π

−π
F (ω) eiωtdω (1)

Assume that f (t) is sampled at 2L time instants am, m ∈ K
with

K = {−L,−L+ 1, ..,−1, 1, .., L} . (2)

The only condition required on the sampling instants am is the
Landau condition (mean distance between the am linked to
the spectral support width). In traditional approaches, signal
is resampled using for instance

f (am) =

∞∑
n=−∞

sinπ (am − n)

π (am − n)
f (n) . (3)

Right-hand side of the formula is truncated to 2L terms (num-
ber of known samples) and, assuming an invertible system,
inverted to compute an approximation of the

f (n) , n = −L,−L+ 1, ..,−1, 0, 1, .., L− 1. (4)

An estimation of f (t) is then obtained, leading to an estima-
tion of F (ω) using FFT (Fast Fourier Transform). Actually, it
is possible to build a sampling scheme that includes the obser-
vations at am,m ∈ K and to complete it with a PNS2L sam-
pling scheme (Periodic Nonuniform Sampling of order 2L)
involving adding samples outside the observation interval of
size 2L. To get the estimation of f (t), the am are assumed to
be distinct (modulo 1) and |am| < L,∀m. Let us define the
sequence tmn by

tmn = am + 2nL,m ∈ K, n ∈ Z (5)

where Z is the set of integers. The sequence tmn has a density
1 because |K| = 2L (cardinal of the set). It is then possible
to perform an errorless reconstruction of F (ω) from the the
knowledge of the f (tmn) and in some other circumstances
when F (ω) is not baseband-type [15], [13]. Intervals Dk are
defined by

Dk =

{ [
(k − 1) πL , k

π
L

]
, k = 1, 2, .., L[

k πL , (k + 1) πL
]
, k = −1,−2, ..,−L (6)

and fk (t) is the result of the bandpass filtering of f (t) on Dk

i.e.:
fk (t) =

∫
Dk

F (ω) eiωtdω. (7)

Obviously f (t) is the sum of the components fk (t)

f (t) =
∑
k∈K

fk (t) . (8)

Functions gk (t) are defined by

gk (t) =

{
fk (t) e−(k− 1

2 ) iπtL , k > 0

fk (t) e−(k+ 1
2 ) iπtL , k < 0

(9)

and Vm (t) ,m ∈ K by (sinc(t) = (sin t) /t):

Vm (t) =
∑
n∈Z

f (am + 2nL) ...

... (−1)
n sinc

(
π
2L (t− am)− nπ)

)
.

(10)

The sinc function converges slowly to 0 (slow decay) but
function f (t) is assumed to be also converging to 0 (finite-
energy function) so that, when L is large enough, the added
unknown samples have only a negligible influence and the
truncation of the series in (10) has only a negligible effect. In
the appendix (Section 5) following formulas are proved:

Vm (t) =
L∑
k=1

gk (t) e(k−
1
2 ) iπamL

+
−1∑

k=−L
gk (t) e(k+

1
2 ) iπamL .

(11)

Provided that (11) is an invertible system:

gk (t) =
det ∆k (t)

det ∆
(12)

where the 2Lx2L ∆ matrix is defined by

∆ = [δmk] , δmk =

{
e(k−

1
2 ) iπamL , k > 0

e(k+
1
2 ) iπamL , k < 0

(13)

and where ∆k (t) is the matrix deduced from ∆ replacing the
column k by the Vm (t) defined in (10).
In the framework of finite-energy functions, f (t) converges
to 0 and this is also the case for the sinc function in (10): the
terms for n 6= 0 in (10) can then be neglected when L is large
enough. Vm (t) then becomes observable as it involves only
the f (am). The am+2nL, n 6= 0 are not sampling times and
are introduced only to get exact reconstruction formulas and
the knowledge of the f (am + 2nL) , n 6= 0 is not required.
If F (ω) has slow variations on intervals Dk (width π/L), the
definition of fk (t) by (7) leads to

fk (0) = gk (0) =

∫
Dk

F (ω) dω ∼= π

L
F

(
kπ

L

)
. (14)



Sampling formula (12) then gives at the same time estima-
tions of f (t) and F (ω) with no additional computation. Ob-
viously, the accuracy depends on the variations of F (ω) and
on the value of L. In previous papers [13], [14] this problem
of irregular sampling has also been addressed by adding a pe-
riodic (or not) sequence of unobserved samples disappearing
in computations and the mathematical proof of a good conver-
gence has been given. But, in the present work, the decisive
advantage comes from formula (14) allowing an easy and di-
rect computation of F (ω).

3. SIMULATIONS

3.1. Signal reconstruction and spectral estimation

In order to validate the proposed method, a simple example
is first built. The following signal f (t) (15) and its Fourier
transform F (ω) (16) is considered (signal is chosen even here
as a real autocorrelation function but this is not a necessary
condition):

f (t) = 8
16−t2

(
1 + cos πt4

)
+

16
64−t2

(
cos πt4 + cos 3πt

8

)
+

16
t2

(
2 cos 5πt

8 − cos πt2 − cos 3πt
4

)
.

(15)

F (ω) =


sin 4ω, ω ∈

[
0, π4

]
sin 8ω, ω ∈

[
π
4 ,

3π
8

]
8
(
ω − π

2

)
, ω ∈

[
π
2 ,

5π
8

]
−8
(
ω − 3π

4

)
, ω ∈

[
5π
8 ,

3π
4

] (16)

and F (ω) = 0 for other positive values of ω.
The sampling instants am are chosen uniformly distributed
on
[
m− 1

10 ,m+ 1
10

]
, so that the minimum distance between

them is different from 0 (actually equal to 0.8). This is a real-
istic sufficient condition for system (11) to be invertible and
this is also a realistic assumption for stepped interferometer
mirrors’ positions. Note that even if the instants are chosen
randomly for simulations, this is only a realization of the uni-
form distribution. The instants are then sorted and assumed
to be known: we remain in the framework of deterministic
sampling. The total number 2L of samples is equal to 60.
Figures 1 and 2 illustrate this example with noisy samples
(centered gaussian white noise) with 30 dB SNR (Signal to
Noise Ratio).

Figure 1 shows that even with a small number of non-
uniform observed samples (L = 30 and sampling instants
covering the interval [−L,L]) the time function f(t) is re-
constructed with good accuracy on [−L,L] with (11), as well
as its Fourier transform F (ω) (Figure 2) through (14). When
L increases, the accuracy of the interpolation also increases,
allowing at the same time to derive spectrograms with fast
variations (which happens when characteristic frequencies
are searched). With a larger number of observed samples
(L = 60), the time function f(t) is reconstructed on a larger
temporal interval and Figure 3 shows that its Fourier trans-
form F (ω) is improved (especially in fast spectral variation
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Fig. 1. Reconstructed and theoretical time function f(t) for
L = 30.
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Fig. 2. Reconstructed and theoretical F (ω) function for L =
30 and comparison to the Lomb-Scargle spectral estimator
with same data.

areas). Indeed, only the mean value of F (ω) on intervals
of length π

L is estimated through (11), which explains why
increasing the number of observed samples improves the
Fourier transform.

A comparison to the Lomb-Scargle spectral estimator is
also displayed for L = 30 and L = 60. The unnormalized
version of the Lomb-Scargle spectral estimator is used so
that the comparison is fair (the 2 estimators are able to es-
timate the power of a white noise). Only the positive part
of the spectrum is displayed in Figures 2 and 3 (assuming
real signal). In these two situations, with the same irregular
data, our estimate has much less ripple and amplitudes are
also estimated with better accuracy. For this kind of spectral
shape (continuous spectrum), the Lomb-Scargle spectral es-
timator underestimates the spectrum amplitude for L = 30
and it is worse for L = 60. This is not the case for our spec-
tral estimate as perfect reconstruction is achieved for signal
with decaying amplitude. Note that the conclusion would
be inverted (in favor of Lomb-Scargle) for signals with peak
spectra like sinusoids.
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Fig. 3. Reconstructed and theoretical F (ω) function for L =
60 and comparison to the Lomb-Scargle spectral estimator
with same data.

3.2. Digital filtering directly from irregular samples

The method also allows to process linear filtering directly
from irregular samples. For instance, let g (t) be defined by

g (t) = 2

∫ π

0

eiωtF (ω) dω. (17)

g (t) is the analytic signal of the signal f (t) defined above.

g (t) = 16
16−t2 e

iπt/8 cos πt8
+ 32

64−t2 e
5iπt/16 cos πt16

+ 32
t2 e

5iπt/8 sin2 πt
16 .

(18)

Clearly, from (7) and (8) it follows:

g (t) = 2
∑

k∈K,k>0

fk (t) . (19)

Here, digital filtering is applied using only terms k > 0 in the
final reconstruction step (8) (filter frequency response is null
for f ∈ Dk, k < 0 and 1 for f ∈ Dk, k > 0). Any linear filter
response expressed as a combination of Dk intervals can be
obtained. The bounds of the intervals have to be integer mul-
tiples of π

L , but this tends to become a weaker condition as L
increases. The reconstructed analytic signal g(t) is displayed
in Figures 4 and 5. Same noisy samples (with 30 dB SNR) as
in Figure 1 were used (L = 30). For better viewing, Figure 5
displays the phase of g(t)e−i

π
2 t rather than directly the phase

of the analytic signal g(t) which contains a strong linear vari-
ation versus ω. These figures illustrate the ability to process
linear filtering with the presented reconstruction formulas di-
rectly from the non uniform samples, without need for inter-
mediate reconstruction of the signal, which could be of great
practical interest for a lot of applications using nonuniform
samples (reduced computational load).
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Fig. 4. Analytic signal for L = 30. Modulus of g(t).
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Fig. 5. Analytic signal for L = 30. Phase of g(t)e−i
π
2 t.

4. CONCLUSION

In this paper we have given and proved formulas allowing
to obtain at the same time good estimations of reconstructed
signal and corresponding power spectra when the sampling
instants are not regularly spaced but assumed to be known.
Formulas obtained by using PNS2L (Periodic Nonuniform
Sampling) scheme are shown to be valid for L large enough
and their accuracy is compared to the Lomb-Scargle, show-
ing better results. Increasing the value of L allows taking
into account larger variations of spectra. Moreover, an orig-
inal solution for performing numerical filtering directly from
non uniform samples is derived from formulas and illustrated.
Finally, it is easily possible to generalize given formulas to
the case when spectral support is divided into two symmet-
ric intervals (this is the case for example when using SIFTI,
TROPOMI or others real equipments) using the general con-
cept of Landau rate rather than Nyquist rate to highlight the
real width of the spectrum.



5. APPENDIX

In this appendix, formula (11) is proved. First, let us con-
sider function eiωt for ω ∈ ]α, α+ π/L[, t being fixed. The
Fourier series development on this interval is

ht (ω) =
∑
n∈Z

cn (t) e2inLω

cn (t) = eiα(t−2nL)+
iπt
2L −inπsinc

(
πt
2L − nπ

)
.

(20)

ht (ω) is equal to eiωt on ]α, α+ π/L[ but not outside this
interval except when πt/L is an even integer. For instance:

ht (ω) = ei(ω−
π
L )t

ω ∈ ]α+ π/L, α+ 2π/L[ .
(21)

As (20) is true ∀t:

eiωt = eiωτ
∑
n∈Z

cn (t− τ) e2inLω

ω ∈ ]α, α+ π/L[ .
(22)

This variant of (20) stands for any real τ . The sum at the
right is uniformly bounded, allowing changes in the order of
summations. Therefore, when brought in (7) with τ = am
and for the correct value of α ((k − 1) πL or k πL following the
sign of k):

fk (t) = e
iπ
L (k− 1

2 )(t−am)..
..
∑
n∈Z

fk (am + 2nL) (−1)
n sinc

(
π
(
t−am
2L − n

)) (23)

for k > 0 and, for k < 0:

fk (t) = e
iπ
L (k+ 1

2 )(t−am)..
..
∑
n∈Z

fk (am + 2nL) (−1)
n sinc

(
π
(
t−am
2L − n

))
. (24)

The key of the problem is then to exhibit the observed data:

f (am) =
∑
k∈K

fk (am) . (25)

Multiplying (23), (24) by e
iπ
L (k− 1

2 )(t−am) and e
iπ
L (k+ 1

2 )(t−am)

leads to (10) and (11). Considering that the value of f be-
comes negligible above the largest am and below the smallest
for L large enough, the unobserved terms f (am + 2nL),
n 6= 0 can be suppressed as |am| < L. In a realistic set of
measurements, this can be justified considering that measure-
ment errors are likely to be larger than the true values for
t < −L and t > L. The 2Lx2L system of equations (11)
is then entirely determined, allowing to derive estimations of
f (t) and F (ω) using (12).
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