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ABSTRACT

We propose a distributed learning to rank method, and
demonstrate its effectiveness in web-scale image retrieval.
With the increasing amount of data, it is not applicable to train
a centralized ranking model for any large scale learning prob-
lems. In distributed learning, the discrepancy between the
training subsets and the whole when building the models are
non-trivial but overlooked in the previous work. In this pa-
per, we firstly include a cost factor to boosting algorithms to
balance the individual models toward the whole data. Then,
we propose to decompose the original algorithm to multiple
layers, and their aggregation forms a superior ranker which
can be easily scaled up to billions of images. The exten-
sive experiments show the proposed method outperforms the
straightforward aggregation of boosting algorithms.

Index Terms— distributed learning, learning to rank, Big
Data

1. INTRODUCTION

The emergence of Big Data has brought many new chal-
lenges to the current multimedia management systems. One
of the key questions, is how to scale up the capacity of ex-
isting machine learning algorithms to understand and orga-
nize the continuously increasing images from public websites
such as Flickr. Thanks to the recent advances in High Perfor-
mance Computing, processing the image data of high volume
is now made possible in the distributed environment. Pow-
erful supercomputers require parallel techniques to achieve
data-intensive tasks. It is infeasible to learn Big Data in a
single computer due to memory limits and prolonged train-
ing time. Many endeavors are therefore put into reducing se-
rial dependencies over tasks or data of structural models to
achieve parallelization.

Web-scale image retrieval is a typical problem from Big
Data, which has been extensively studied and successfully
commercialized in recent years. It is similar to the con-
ventional search engine while images are retrieved through
queries in text or image format. It remains as a challenging
issue due to the “semantic gap” between the low level feature
description and high level semantics, and the “intent gap” be-
tween users’ real demands and their representation in the re-

trieval system. As a result of the growth of the Web and Big
Data, several terabytes of queries and web search interaction
data are now available per day on a typical commercial search
engine [1]. It enlightens a new direction to bridge the seman-
tic and intent gaps by revealing the intention from users to re-
trieval results using click logs on a real-world search engine.
One solution to the problem is to train a web search ranker
based on the query text and feature vectors from clicked im-
ages, and user clicks are used as class labels [2].

With the above motivations, we propose a distributed
learning to rank method to tackle the issue of web-scale image
retrieval. An examplar framework of our proposed system is
presented in Figure 1. In the online part, users interact with
the system with their query text, and further click on the re-
trieved images they are interested in. Click logs are recorded
and transferred to the offline part together with the images.
Image features are extracted by the offline system and coupled
with query and click logs to form the whole training data. Big
training data is partitioned into several data shards, and learn-
ing to rank algorithm is applied over distributed subsets. A
ranking model is built by aggregating the numerous models
from data shards and returned to the online system. It is used
to sort new images according to the query.

In this paper, we contribute to scaling up the learning to
rank algorithm over Big Data. Previously, a combination of
Bagging and Boosting [3, 4] is shown as a successful rank-
ing model, as it maintains the scalability in Bagging and the
accuracy in Boosting. However, the correlation between the
partial training data against the whole is non-trivial but over-
looked in their work. We present a multi-layer cost-sensitive
Bagging Boosting method which balances the difference be-
tween the training subsets and the whole data, and provide
a way to maximize the performance of distributed learning
algorithm. Firstly, with careful selection, we include a cost
factor to AdaBoost to balance the individual models toward
the whole data. Then, we propose to decompose the original
algorithm to multiple layers, and their aggregation forms a
superior model for distributed learning. We focus our efforts
in data parallelism, namely that the process of training is per-
formed by distributing data across computing nodes, which is
demonstrated as an effective way to process Big Data concur-
rently [5].

The rest of the paper is organized as follows. Section
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Fig. 1: An illustration of the proposed framework for web scale image retrieval.

2 gives an overview of distributed learning, and learning to
rank. In Section 3, we describe the proposed distributed learn-
ing to rank method, including multi-layer Bagging Boosting
and cost-sensitive boosting. Section 4 presents the perfor-
mance of proposed method over two ranking dataset: MSR
LETOR dataset [6] and MSR-Bing challenge dataset [1], and
Section 5 concludes the paper.

2. RELATED WORK

2.1. Distributed machine learning

In general, there are two ways in distributed learning, which
includes data sampling and software parallelism [7]. The ma-
jor problem of distributed learning is the probability distri-
bution of the individual training data is different from that
of the whole data. Sampling becomes an effective method,
which aims to construct a balanced distribution similar to the
whole data by certain mechanisms. On the other hand, cost-
sensitive learning provides an alternative way of using costs
from different cost matrices for misclassifying any data sam-
ples. A cost matrix is considered as a numerical representa-
tion to penalize the misclassified samples between classes [8].
The manipulation of values in cost matrices allows to balance
the distribution from a particular dataset to Big Data.

While there are algorithms where the output is equiva-
lent to the distributed ones by using the MapReduce model
[9], many distributed algorithms build models differing from
the ones when training on the whole data. A distributed Ad-
aBoost by Fan et al. [10] is an example, where a classifier is
built on selected training data either by randomly sampling
from the training set or from a disjoint partition from the
whole set. The weights of all training samples are updated af-
ter each iteration of boosting through communication across
distributed subsets based on a global weight vector. Dean et

al. [5] developed a distributed network for Deep Learning,
which has also received substantial attention recently.

2.2. Learning to rank

The general idea behind ranking models is to produce a re-
trieved rank list which sorts new documents or images ac-
cording to their degrees of relevance to the query. In com-
parison to hand-crafted rankers, learning to rank aims to train
such a single model across query-document pairs, and most
algorithms learn the optimal combination of feature vectors
from query-document pairs through discriminative learning
[2]. The feature vectors can be the number of occurrences of
the query terms in the documents, the result from the PageR-
ank model, or image features from the relevant images. Dis-
criminative learning contributes to combining the feature vec-
tors to produce the relevance score in the output. It maps the
input objects to the output space based on the hypothesis, and
measures the difference between the prediction and expected
output and adjust its weights accordingly. The method is ap-
plied to multimedia retrieval problems to re-rank the retrieved
images [11].

The algorithms of learning to rank mainly follow a com-
mon framework, which consists of learning a model over the
training data, measuring the quality of retrieval results by an
evaluation metric as the loss function and organizing the train-
ing samples in three types of data structure. A typical en-
try in training samples is a triplet of (Query, Feature Vectors,
Relevance). The Discount Cumulative Gain (DCG) and its
normalized version are widely used to evaluate the quality of
a retrieval system. The structure of the training set can be
pointwise, pairwise or listwise.



3. PROPOSED DISTRIBUTED LEARNING TO RANK

As aforementioned, we distribute the computation and data
across supercomputer nodes to achieve data parallelism of
ranking. In Section 3.1, we describe the method that we in-
sert a cost factor to the weighting procedure in boosting algo-
rithms to impose a bias towards data of different importance.
Then, rather than giving the straight output ranker from boost-
ing, we introduce a new multi-layer boosting method in Sec-
tion 3.2 to take more intermediate results and generate mul-
tiple models as outputs. We aggregate all results from indi-
vidual models to build up the final ranker for the system in
Figure 1.

3.1. Adding cost to a single-layer boosting

AdaBoost and its variant AdaRank are powerful algorithms
for learning to rank in multimedia information retrieval [12,
13]. The algorithm provides a weighting procedure where the
weights of misclassified samples are strengthened on each it-
eration, while the correctly ranked samples become weaker
for the next base ranker. In this way, the learner will be en-
hanced by training on misclassification. The weighting pro-
cedure can be incorporated with cost factors in dataspace for
imbalanced learning [8]. We add such a cost factor Ci in the
exponential term of the data weighting scheme, which will
interfere with each sample di being boosted. It subsequently
equalizes the imbalance between data shards by iteratively
modifying the boosting factors of samples between the ma-
jority and minority classes according to the pre-defined cost
metrics. The algorithm of cost-sensitive AdaBoost is shown
in Algorithm 1. AdaRank is similar but aims to reduce the
measurement error directly. Due to the inclusion of cost, the
weight updating parameter αt on each iteration is determined
in Equation 3. We calculate r shown in Equation 1 below, and
the derivation of α and r can be found in [8].

r =
∑
i

Dt(i)yiht(xi)Ci, (1)

where on iteration t, Dt(i) is the distribution, yt denotes the
class labels and ht(xi) is the hypothesis made to each sam-
ple. The input S = {qi, di, yi}mi=1, where qi denotes the ith

query, di = {di1, di2, ..., di,n(qi)} is the retrieved documents
or images by qi, and yi = {yi1, yi1, ..., yi,n(qi)} is the list of
ranks by query qi.

3.1.1. Selection of cost factor

Though cost-sensitive dataspace weighting is an effective
method in imbalanced learning, the cost factor is empirically
determined in most cases such as in [8]. To balance the dis-
tributed learning models, we formulate a viable approach to
determine the cost matrixC. The inclusion of cost takes effect
on the importance of learning samples. Namely, the increase

Data: S = {qi, di, yi}mi=1,

Initialize: D1(i) = 1/m for i = 1, ...,m.

for t=1,..,T do
Train the base ranker ht → Y using distribution Dt;
Aim: select ht to minimize the weighted error:

εt =
m∑
i=1

Dt(i)I(yi 6= ht(xi)). (2)

Determine weight updating parameter

αt =
1

2
ln(

1 + r

1− r
), (3)

where r is defined in Section 3.1;
Update and normalize sample weights

Dt+1(i) =
Dt(i) exp(−αtht(xi)yiCi)

Zt
, (4)

where Zt is a normalization factor, and C is the cost matrix;
end
Output: the final ranker

H(x) = sign(

T∑
t=1

αtht(x)). (5)

Algorithm 1: Cost-sensitive AdaBoost algorithm.

of cost on misclassified samples will penalize them heavier
in the training process, and the correctly ranked samples will
drift further away from future rankers with a stronger Ci. We
setup a cost matrix for samples of each class. Moreover, we
need to know the class probabilities in the whole training data
(pb) and its data subsets denoted as ps. In case this is infeasi-
ble to compute, we can randomly sample the Big Data several
time, and compute the average probability.

We give the cost matrix for binary classifications below,
and it can easily be extended to multi-class ranking problems.

C =

(Actual Negative Actual Positive
Predict Negative 1 ps(positive)

pb(positive)

Predict Positive ps(negative)
pb(negative) 1

)
(6)

Suppose we have a binary class as positives and nega-
tives, then pb(positive) denotes the probability of occur-
rences of positive samples in the whole training data, while
ps(negative) measures the frequency of negatives in one data
shard. The rows indicate the predicted class labels, and the
columns are the true class labels. Therefore, on each boosting
iteration, the misclassified samples will be further boosted if
less represented since the probability ratio from its opposite
class is high. On the other hand, the prevailing positive sam-
ples for example will be suppressed with less probability in
the occurrence of negative samples.

3.2. Multi-layer Bagging Boosting models

As shown in Algorithm 1, the idea of (cost-sensitive) Ad-
aBoost is to train a strong model by gradually reducing the



misclassification errors. While the outcome is an exception-
ally strong ranker to the local data, there exists a risk of over-
fitting the subsets resulting in a weak generalization over the
entire set. We propose to take into consideration of more in-
termediate results as learners, so that it not only avoids over-
fitting but strengthens the stability of the entire model through
the bagging step thereafter. We describe a multi-layer boost-
ing model over one data shard in Figure 2. Once the algorithm
continues in training base ranker, several intermediate mod-
els are taken out and combined. The output from the original
model is also included in the proposed algorithm. Numer-
ous intermediate models are trained over data subsets, which
form multiple layers of learners. To this end, we construct a
new model by merging the numerous learners from the same
boosting algorithm after a single training session.

Fig. 2: A block diagram representation of the multi-layer Ad-
aBoost algorithm.

Moreover, we present a pseudo code to show the bagging
boosting procedure specifically over the communications
between distributed learners in the following algorithm.

Algorithm 2: Generate the ranking model by distributed
learning.

1. Distribute the training data and replicas of boosting models
to different supercomputer nodes.
2. Wait until data shards are trained by the cost-sensitive
boosting algorithm, then recall the models, and build multi-
layer rankers.
3. Collect the distributed rankers and make aggregated pre-
dictions on new datasets.

4. EXPERIMENTS

In this section, we evaluate the proposed method over two sets
of benchmark datasets, which are Micrsoft LETOR4 [6], and
a new clickthrough data named MSR-Bing web-scale image
retrieval dataset [1].

4.1. Evaluation metrics

In the following experiments, we use Normalized Discounted
cumulative gain (NDCG) as an evaluation measure. For a
given query qi, the rank list yij with respect to its relevance
to the query, and a permutation πi on document di, then

NDCGp is defined as

NDCGp =
DCGp

IDCGp
,where DCGp =

p∑
i=1

2yij − 1

log2(πi + 1)
, (7)

IDCGp is the result from the ideal rank list. We may have a
fixed length of ranking list, which is denoted as NDCG@N ,
where N denotes the number of items retrieved .

4.2. Experiment setup

We adopt RankBoost (AdaBoost ranking) [14] and AdaRank
[13] as two iterative ranking algorithms to evaluate the pro-
posed method. A decision stump performs as the weak
learner, and the data is organized listwise in all cases. The al-
gorithms not only are exclusively trained to predict the rank-
ing lists, but they are extended to our proposed method to
demonstrate their improvements. The number of training
iterations is determined dynamically when the ranker per-
formance starts to decrease over the training set. We use
NDCG@5 as the measure in training.

4.3. Experiments on MQ2007

LETOR 4.0 collects two query sets from TREC2007, and the
Gov2 web page collection for retrieval. It is a widely used
dataset to test ranking algorithms. The data is divided into 5
folds. In distributed learning, we take the first 3 folds to train
rankers separately, and aggregate them to produce the ranking
results, which is denoted as “MLC ” or “Bag ” in Figure 3.
We also train the first 3 data folds together, the other fold is
used for testing, shown in “whole”. In MQ2007, there are
around 1700 queries, and roughly 70,000 query-URL pairs.

The results are shown in Figure 3. The left two bars in
every evaluation indicate results by training over the entire
3 folds. The middle four are results from the proposed al-
gorithms with either 1 iteration or 5 iterations as an interval
between layers. For example, “MLC AdaBoost 1” indicates
we generate ranking results by the proposed multi-layer cost-
sensitive AdaBoost (RankBoost) algorithm, and we take ev-
ery iteration to build the layers. The last two are generated by
bagging the models from straightforward training over each
data fold. It shows we receive a performance gain using the
proposed “MLC ” algorithm when comparing with the unbal-
anced bagging results (“Bag ”), especially the cost-sensitive
AdaRank with 5 iterations per layer wins the rest correspond-
ing algorithms in all categories. It also indicates training over
the whole data does not give superior results, while the dis-
tributed rankers can mine the discriminative patterns over the
subsets.

4.4. Experiment on MSR-Bing Web-Scale Image Re-
trieval

MSR-Bing dataset is a newly released large-scale real-world
image dataset with click logs. It aims to bridge the semantic
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Fig. 3: Ranking accuracy on MQ2007 and MSR-Bing re-
trieval datasets.

and intent gap in web-scale image retrieval using clicks from
Bing search engine. Its current release has 1 million images
and 11.7 million unique image-query pairs. We formulate it
as the same ranking problem. Distributed rankers are trained
over query-image pairs and their relevance, and finally their
aggregator is used to rank the entire test dataset. In this ex-
periment, we adopt 280,000 image-query pairs for training,
while every 10,000 pairs are separately trained as a distributed
data shard, and we use 1,000 most popular queries for testing.
This training procedure can easily be scaled up to more data
using more computations. Similar to the conventional rank-
ing procedure, we need to construct our own training data
of triplets of (Query, Feature Vectors, Relevance), given the
query-image pairs and number of clicks. We extract three vi-
sual features shown in Table 1 to represent each image. And
the relevance yij in each query-image pair is empirically de-
termined according to the click counts n in Equation 8. In
Figure 3, the left two bars of each evaluation are the results
by the direct aggregation of boosting without cost-balancing,
while on the right, it shows the proposed algorithm signifi-
cantly improves the accuracy in the distributed environment.
RankBoost is the most competitive ranker in all cases.

Name Type Feature length
Color Structure Descriptor Color 32
Local Binary Patterns Texture 57
Canny Edge Shape 61

Table 1: Image features and their length.

yij =


3 if n > 20,

2 else if 10 < n ≤ 20,

1 else if 0 < n ≤ 10,

0 Otherwise.

(8)

5. CONCLUSION

In this paper, we aim to scale up the learning to rank method
by balancing the distributed ranking models toward Big Data,
and subsequently improve its performance. We made two
major contributions: we introduce a cost factor to boost-
ing algorithm and give an explicit definition to the cost ma-
trix. Then, we propose a multi-layer boosting algorithms,

and summarize the learning procedure for distributed envi-
ronment. The experiments show the proposed method outper-
forms the straightforward ranking aggregation when ignoring
the data imbalance. The method is also highly parallel and
can be extensible to billions of images. In the future, we plan
to investigate the effect of learning different training subsets,
and their weighted combinations in ranking problems. Also,
more advanced visual features will be taken into considera-
tion to further boost the system performance.
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