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ABSTRACT

In binaural systems, source localization in the median plane

is challenging due to the difficulty of exploring the spectral

cues of the head-related transfer function (HRTF) indepen-

dently of the source spectra. This paper presents a method of

extracting the HRTF spectral cues using cepstral analysis for

speech source localization in the median plane. Binaural sig-

nals are preprocessed in the cepstral domain so that the fine

spectral structure of speech and the HRTF spectral envelope

can be easily separated. We introduce (i) a truncated cepstral

transformation to extract the relevant localization cues, and

(ii) a mechanism to normalize the effects of the time varying

speech spectra. The proposed method is evaluated and com-

pared with a convolution based localization method using a

speech corpus of multiple speakers. The results suggest that

the proposed method fully exploits the available spectral cues

for robust speaker independent binaural source localization in

the median plane.

Index Terms— Binaural localization, cepstral transfor-

mation, head related transfer function (HRTF), median plane.

1. INTRODUCTION

The human auditory system localizes a sound source by ex-

ploring the interaural time/level differences (ITD/ILD) and

the monaural spectral cues of binaural signals received at the

ears [1]. The acoustic transfer function, i.e., the head-related

transfer function (HRTF), encompasses these cues and has

been widely adopted to design binaural source localization

systems. In general, HRTF based localization algorithms

identify a source location by maximizing the correlation be-

tween the binaural signals [2], or the ITD/ILD estimates [3],

in the range of possible source locations. Although this ap-

proach is known to be robust in the horizontal (azimuth) plane

dominated by interaural cues [4], work on median (elevation)

plane localization has been limited and challenging, due to

the diminishing interaural differences and the dominance of

the spectral localization cues [5, 6].

Human perceptual experiments have shown that elevation

is perceived as resonances (peaks) and cancellations (notches)

of certain frequencies, which are mainly caused by scattering
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Fig. 1. The system block diagram. c̃
X̃i,k

, c
X̃i,k

are the cepstral

domain representations of a received signal hi(t) ∗ s(t) in the

kth time frame. G(ω) is the prefilter described in (4) and (9).

and diffraction of sound waves in the pinna at high frequen-

cies [7]. Numerous methods from parametric models [7, 8]

to finite-difference time-domain models of the head [9] have

been proposed to map the frequencies of these notches to the

source location. However, the accuracy of this mapping is

critically affected by perturbations in elevation and the rever-

berant nature of the acoustic environment. In addition, the

more robust algorithms [10] are also more computationally

complex, due to the nature of the HRTF frequency response

and the influence of the source spectra on the localization

cues.

In this paper, we present a method of localizing speech

sources in the median plane, by extracting the HRTF spectral

cues through a cepstral transformation of the binaural signals

that can minimize the influence of the source spectra. Two

speech characteristics needed to be considered: i) the major-

ity of the energy is concentrated at low frequencies, where

spectral cues are negligible and ii) the non-stationary nature

of speech. The first characteristic suggests that speech can be

fairly well localized in the median plane, due to less variabil-

ity at frequencies above 3–4 kHz, and the reduced likelihood

of the speech spectrum contaminating the spectral cues. The

second characteristic suggests a short-time approach, i.e., a

short-time Fourier transform, is best suited to model the vari-

ability of the speech spectrum. In this context, the proposed

cepstral processing of binaural signals retains both the fine

low frequency structure of the speech source and the HRTF

magnitude information (spectral envelope) at two distinctive

parts of the cepstrum. This, together with the logarithmic op-

eration of the cepstral transform that acts as a weighting func-



tion at higher frequencies, enables a simpler separation of the

two components and the use of the enlarged fluctuations in

the HRTF magnitude response for localization. Finally, the

cepstral prefiltering concept has been shown to be robust to

the effects of reverberation in previous studies [11, 12], sug-

gesting that the proposed method may also be suitable for lo-

calization in reverberant conditions.

2. SYSTEM MODEL

The received signal at each of the binaural receivers is a con-

volution of the source signal s(t) and the corresponding head

related impulse response hi(t) for i ∈ {l, r} representing the

left and right ears. Thus, for a single active source, the re-

ceived signal can be expressed in the frequency domain as

Xi,k(ω) = Hi(ω) · Sk(ω) +Ni,k(ω), (1)

where Xi(ω), Hi(ω) and S(ω) represent the received signal,

HRTF and source spectra at a frequency ω. Ni,k(ω) rep-

resents the additive noise term and k = 1 . . .K represents

the frame number. The speech signals are separated into K
frames, such that the frame length is less than the station-

ary time duration of the signal, typically 10–50 ms for voiced

speech [13].

In this study, we consider the source signals to be pure hu-

man speech; thus, the majority of the energy in the received

signals at the ears are concentrated below 4 kHz (generally

the formant frequencies) during voiced speech [13]. However,

the localization cues relevant to the median plane are preva-

lent at frequencies above 3 kHz [5, 6], and the HRTF features

must therefore be extracted from the high frequency region

of the received signal spectrum. The cepstral preprocessing

approach we propose to extract these features and localize a

source is illustrated in Fig. 1 and described below.

2.1. Cepstral Transformation

The transformation of a signal into the cepstral domain is an

inverse Fourier transform of the absolute magnitude spectrum

of that signal. Thus,

cXi,k
, F−1 {log10 |xi,k|} , (2)

where xi,k = [ Xi,k(0), · · · , Xi,k(ωmax) ] is the signal spec-

trum and F represents the Discrete Fourier Transform (DFT).

The cepstral transformation of (1) can be expressed approx-

imately as a sum of the cepstral coefficients of the HRTF,

speech and noise components respectively, due to the log-

arithmic operation of the cepstral transform, and is defined

as [11, 12]
cXi,k

, cHi
+ cSk

+ c
Ñi,k

, (3)

where c
Ñi,k

, F−1 {log10 |1 +Ni,k/ [Hi(ω)Sk(ω)]|}.

The magnitude response of the HRTF could therefore be

reconstructed by extracting the cepstral coefficients corre-

sponding to cHi
. In practise however, the influence of the

speech spectrum will distort the reconstructed HRTF, and

requires a statistical normalization of the effects of speech.

Hence, to reduce this distortion, we introduce a prefilter

G(ω), as shown in Fig. 1 (the derivation of G is described

in Section 2.3). In order to simplify the derivation we will

ignore the effect of noise (c
Ñi,k

→ 0), but will include and

evaluate its effect on the localization performance in Section

4. Thus, the prefiltered received signals can be simplified as

X̃i,k(ω) = G(ω) ·Hi(ω) · Sk(ω). (4)

The corresponding cepstral domain representation becomes

c
X̃i,k

= cG + cHi
+ cSk

, (5)

where g = [ G(0), · · · , G(ωmax) ] is the spectrum of the

prefilter and cG , F−1 {log10 |g|}.

2.2. Truncation of Cepstral Coefficients

The lower order cepstral coefficients in (3) typically model

the envelope of the received signal spectrum, while the higher

order coefficients model its rapid spectral fluctuations. In

the case of speech sources, the higher order coefficients are

predominantly speech information [13] corresponding to the

pitch and formant structure of a particular speech frame. The

spectral envelope of the HRTF could therefore be extracted

by appropriately truncating the cepstral coefficients in (5).

Thus, we define a truncation operation T {·}, that retains

sufficient HRTF magnitude information for source localiza-

tion. The truncated cepstral coefficients now become

c̃
X̃i,k

, T
{
c
X̃i,k

}
= T {cG}+ T {cHi

}+ T {cSk
} , (6)

where the truncation order is determined by the number of

cepstral coefficients required to model the magnitude re-

sponse of hi(t).

2.3. Cepstral Preprocessing and Speech Normalization

Including the effects of the cepstral truncation operation de-

scribed in the previous section, (6) can be expressed as

c̃
X̃i,k

= cG + ĉHi
+ T {cSk

} , (7)

where ĉHi
, T {cHi

} and cG , T {cG}. ĉHi
characterizes

the cepstral approximation of the HRTF magnitude response,

i.e., the spectral envelope, but source localization requires the

estimation of ĉHi
in the presence of time varying speech.

As stated previously, we introduce the prefilter G(ω) to

normalize the effects of the speech component T {cSk
}, such

that
cG + E [T {cSk

}] = c0, (8)

where c0 = [ c0, 0, · · · , 0 ] is a constant vector and E [·] is

the expectation operator. c0 is an arbitrary constant, selected

such that G(ω) normalizes the distribution of speech energy



across frequency, resulting in only the zero-th order cepstral

coefficient. Thus, the prefilter can be expressed as

g = 10F{c0−cS}, (9)

where cS , E [T {cSk
}] is obtained empirically from the

analysis of speech data obtained from multiple speakers.

3. SOURCE LOCATION ESTIMATION

3.1. Extracting the HRTF Spectral Envelope

The design of the prefilter and the behaviour of the speech

spectrum can now be exploited to extract the truncated cep-

stral HRTF coefficients ĉHi
as shown below. For a particular

speaker, the expectation of (7) can be expressed as

ĉ
X̃i

,
1

K

K∑

k=1

c̃
X̃i,k

= cG + ĉHi
+

1

K

K∑

k=1

T {cSk
}

= c0 + ĉHi
− cS +

1

K

K∑

k=1

T {cSk
} , (10)

where cG = c0 − cS from (8). We exploit the property

of speech, where for sufficiently large K the spectrum ap-

proaches a general distribution [14, 15], such that

1

K

K∑

k=1

T {cSk
} → E [T {cSk

}] = cS . (11)

Thus, (10) becomes

ĉ
X̃i

≈ c0 + ĉHi
, (12)

where c0 is zero for all but the first element, i.e., a cepstral

representation of a uniform spectrum. The HRTF spectral en-

velope can therefore be extracted by applying an inverse cep-

stral transformation to (12), and is given by

ĥi = 10
F
{
ĉ
X̃i

−c0

}

. (13)

3.2. Sound Source Localization

In this paper, the correlation between the extracted HRTF

spectral envelope and the HRTFs in a pre-measured database,

is adopted as a metric to determine the actual source loca-

tion. However, since the localization cues that differentiate

the source locations in the median plane are both subtle and

predominantly located at higher frequencies, we first com-

bine the extracted HRTF spectral envelopes obtained from the

received binaural signals in (13) for the relevant frequency

range ω ∈ {ωa, . . . , ωb}. Thus, the binaural “estimated

HRTF spectral envelope” becomes

ĥ =
[
Ĥl(ωa), · · · , Ĥl(ωb), Ĥr(ωa), · · · , Ĥr(ωb)

]
,

(14)

where ĥi =
[
· · · , Ĥi(ωa), · · · , Ĥi(ωb), · · ·

]
.

The spectral envelopes of the median plane HRTFs in the

database can be expressed in a similar fashion, by applying

the cepstral truncation operation T . Thus, the binaural “eval-

uated HRTF spectral envelope” in the direction Θ becomes

h(Θ) =
[
H̃l(Θ, ωa), · · · , H̃l(Θ, ωb), H̃r(Θ, ωa), · · ·

]
,

(15)

where hi(Θ) , 10F{ĉHi
(Θ)} =

[
· · · , H̃i(Θ, ω), · · ·

]
.

The sample cross-correlation can therefore be used to cal-

culate the source localization spectrum, i.e., the correlation

between (14) and (15) for all possible source locations, as

P (Θ) = ĥ⊕ h(Θ), (16)

where ⊕ denotes the cross-correlation operation. Hence, for

a single active sound source, the estimated source location in

the median plane can be determined by evaluating (16) for all

Θ, and is given by

Θ̂ = argmax
Θ

{P (Θ) ≥ γ}. (17)

Considering the possible influence of noise and the case of no

active sound sources, an appropriate threshold is chosen, i.e.,

γ = max{0.95 · max{P (Θ)}, 0.5}, to identify the peak of

the spectrum and the relevant source location.

4. EVALUATION

4.1. Simulation Setup

We evaluate the performance of the proposed localization

technique in the median plane through simulations, using

MIT’s HRTF measurement database of the KEMAR dummy-

head [16]. The simulated clean speech signals are obtained

from a corpus of 34 speakers, each with 600 utterances

sampled at 16 kHz, consisting of a sequence of words in

a sentence. The speech data is obtained from the sample

recordings used in the “PASCAL ‘CHiME’ Speech Sepa-

ration and Recognition Challenge” [17], and the binaural

signals are produced by convoluting the KEMAR head re-

lated impulse responses with these speech signals. We apply

a voice activity detector to identify the voiced speech frames,

and perform the Fourier and cepstral transform operations

using a 20 ms Hamming window at 10 ms intervals, i.e., a

window length of 320 samples corresponding to the sampling

rate of 16 kHz. The prefilter g is computed from the aver-

age speech cepstrum as per (11), and is used as a common

prefilter for all 34 speakers.

The localization performance is compared with the state-

of-the-art convolution based binaural localization scheme

described in [18]; a superior, more noise-robust variant of the

Source Cancellation Algorithm [2] and the classical matched

filtering approach [19]. We evaluate the performance in the

3.5–7.5 kHz audio bandwidth, where spectral cues are known

to dominate [5], at the indicated Signal to Noise Ratios

(SNRs). The effect of reverberation is not explicitly consid-

ered, but the cepstral methods are known to be robust to its

effects [11, 12], due to the truncation operation’s removal of

the rapid spectral fluctuations. The empirical threshold used
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Fig. 2. Correlation between the truncated approximation and

the actual HRTF, for source locations in the median plane.

It should be noted that the correlation peaks and falls with

increasing truncation order (not shown in the figure).

to identify a source detection is common to both techniques,

and is described in (17).

4.2. Effects of Cepstral Preprocessing

The effects of truncating the HRTF magnitude response in

the cepstral domain, as described in Section 2.2, is presented

in Fig. 2. The mean correlation and standard deviation be-

tween the actual HRTF and the truncated approximation of

the HRTF in the 3.5–7.5 kHz audio bandwidth is summa-

rized for the KEMAR’s median plane source locations. As

expected, we observe that increasing the cepstral truncation

order improves the correlation, due to the inclusion of the

rapid fluctuations in the HRTFs. However, our objective is

to extract a smooth form of the spectral cues in the magnitude

response of the HRTF, i.e., model the general shape of the

HRTF with a sufficiently small number of coefficients. We

observe that the mean correlation stabilizes beyond approx-

imately the first 25 cepstral coefficients, and therefore use a

cepstral truncation order of 25 to extract the HRTF spectral

envelopes of the binaural signals.

4.3. Single Source Localization Performance

Fig. 3 illustrates the comparison of the source localization

spectra for the convolution based and proposed methods for

a single trial at 40 dB SNR. The vertical dashed line at 10◦

indicates the actual source location in the median plane. Al-

though the peak correlation for both techniques correspond

to the actual source location, it can be observed that the con-

volution based method provides a flatter source localization

spectrum, in contrast to the distinctive peak of the proposed

method. Naturally, the flat spectrum increases the uncertainty

of the estimated source location, i.e., the confidence interval

of the estimate. For simplicity, we use a single standard devi-

ation of the distribution of the detected source locations as a

metric to quantify this uncertainty, and is denoted by the error

bars in the subsequent figures.

Fig. 4 illustrates the average source localization perfor-

mance for a source located in the median plane at 10◦ inter-
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Fig. 3. Source localization spectra of the proposed and convo-

lution based methods for a source at 10◦ in the median plane.

vals between -40◦ and 220◦, in the 3.5–7.5 kHz audio band-

width. 0◦, 90◦ and 180◦ indicate the source locations directly

in front, above and behind the KEMAR in the median plane.

The results are the averages of multiple trials using different

speech segments of the speakers in the ‘CHiME’ speech cor-

pus for each source location. The dashed line indicates the ac-

tual median plane source locations in the different experiment

scenarios, and is the performance benchmark the localization

algorithms should ideally follow.

The localization performance results in Fig. 4(a) show

similar localization accuracy for both techniques, but a much

greater uncertainty of the estimated location for the convo-

lution based method at 40 dB SNR. In general, decreasing

SNR in Fig. 4(b) and (c) results in a degradation in the per-

formance, but the proposed method is shown to be superior

and more robust to the effects of noise. Crucially, the uncer-

tainty of the source location estimate of the proposed method

is not visibly affected. However, at 20 dB SNR in Fig. 4(c),

the performance of the proposed method diverges from the

ideal benchmark in the region directly above and behind the

KEMAR head. This is consistent with the known localiza-

tion capability of humans [1], and is mainly due to the lack

of rich spectral cues in these regions. The greater uncertainty

of the convolution based method is primarily due to it favour-

ing the higher energy region of the signal spectrum, and is a

deficiency that is exacerbated with decreasing SNR. Overall,

the greater accuracy of the proposed method at low SNR indi-

cates a more efficient exploitation of the spectral localization

cues for binaural localization in the median plane.

5. CONCLUSION

In this paper, we present an effective technique to extract the

HRTF spectral cues using cepstral processing for binaural

source localization in the median plane. We introduce the

concept of truncating the binaural signals and HRTF data

in the cepstral domain, and show that a small number of

cepstral components retain the key localization information.

Further, we show that the variable spectral characteristics

of speech can be normalized in a straightforward manner

to further reduce its influence on spectral cue extraction.
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Fig. 4. Average single source localization performance in the 3.5–7.5 kHz audio bandwidth at (a) 40 dB, (b) 30 dB and (c) 20

dB SNR. The figures indicate the source location estimate and the level of uncertainty of the estimate for different trials, where

the source is located at the actual elevations between -40◦ and 220◦ in the median plane.

The median plane localization performance of the proposed

method is compared with the state-of-the-art convolution

based approach, and is shown to produce a more confident,

noise-robust location estimate. This implies that the proposed

method effectively extracts the spectral cues in the HRTF to

achieve speaker independent binaural source localization in

the median plane. Future work will investigate extending the

concept of cepstral HRTF extraction to multiple source local-

ization, as well as localization in both azimuth and elevation.
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