
CONSENSUS FOR CONTINUOUS BELIEF FUNCTIONS

Zhiyuan Weng and Petar M. Djurić
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ABSTRACT

We study the belief consensus problem in networks of agents.
Unlike previous work in the literature, where agents try to
reach consensus on a scalar or vector, here we investigate how
agents can reach a consensus on a continuous probability dis-
tribution. In our setting, the agents fuse functions instead of
point estimates. The objective is that every agent ends up with
the belief being the global Bayesian posterior. We show that
to achieve the objective, the agents need to know the number
of total agents in the network. In many scenarios, this number
is not available and therefore the global Bayesian posterior is
not achievable. In such cases, we have to resort to approxi-
mation methods. We confine ourselves to Gaussian cases and
formulate the optimization problem for them. Then we pro-
pose two methods for the selection of weighting coefficients
used for combining information from neighbors in the fusion
process. We also provide results of simulation that demon-
strate the performance of the methods.

Index Terms— Agent networks, belief consensus, Co-
variance Intersection, fusion of probability distributions.

1. INTRODUCTION

Consensus problems have been studied for decades since they
were raised in the 1970’s. They have a wide range of applica-
tions in many areas, including social learning, wireless sensor
networks and distributed computing. There are many articles
on consensus problems in the literature, but most of them are
focused on point estimates, i.e., the consensus on a scalar,
a vector and/or a discrete distribution. In [1], the problem
of consensus for a discrete distribution has been studied. It
is one of the earliest papers on consensus problems. In [2],
the authors have addressed the consensus of a likelihood ratio
for target detection in sensor networks. A convex optimiza-
tion technique for accelerating the convergence to consensus
has been used in [3] and [4]. Consensus problems in dynam-
ic network have also been studied [5]. In [6], the authors
have investigated a broadcasting-based gossiping algorithm
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to compute the average of the initial measurements of the a-
gents. An approach for increasing the convergence rate of
the consensus based on an asymmetric interaction mechanism
with time-varying weights has been introduced in [7]. In [8],
the authors examine the problem of designing weights when
the network is subject to random link failures and switching
topology. An early work on consensus for belief functions is
[9], but it only contains results on discrete functions.

In this paper, we study the belief consensus problem
where the belief is a continuous probability distribution. The
objective is that the agents in the network reach consensus
on the posterior given all the observations in the network.
We argue that this is impossible to achieve without knowing
the number of agents in the network. We then propose two
methods to approximate the posterior. Simulation results are
provided to demonstrate the performance of the methods.

The paper is organized as follows. The problem is for-
mulated in Section 2. In Section 3, we review the Covari-
ance Intersection method. We propose the new approaches in
Sections 4 and 5 where two criteria are used. In Section 6,
we discuss how we use the proposed approach to perform the
consensus in the network. Experimental results are provided
in Section 7. Section 8 concludes the paper.

2. PROBLEM FORMULATION

Suppose there are N agents in a network, each of them in-
terested in the state of x. The agents have a prior belief
about x, denoted by p (x). The agents also receive measure-
ments yi with information about x. The belief of agent i
is the posterior that it forms about x and which is given by
pi(x|yi) ∝ p (yi|x) p(x), where ∝ signifies “proportional
to” and p (yi|x) is the likelihood of x. We study the problem
of reaching a consensus in the belief of the agents by iterative
exchange of information among them.

According to Bayes’ theorem and with the assumption
of conditionally independent observations, the global optimal
belief is the posterior

p (x|y1, · · ·yN ) =
p (x)

∏N
i=1 p (yi|x)∫

p (x)
∏N

i=1 p (yi|x) dx
. (1)



In this paper, we address the following problem: can (1) be
obtained in a distributed way and be the belief at which the
consensus is reached. It is not hard to see that the key for
reaching this goal is to obtain p (x)

∏N
i=1 p (yi|x). For sim-

plicity, we assume that the prior p (x) is proportional to a con-
stant. Hence, (1) becomes

p (x|y1, · · ·yN ) =

∏N
i=1 p (yi|x)∫ ∏N
i=1 p (yi|x) dx

=
1

Zc

N∏
i=1

p (yi|x) . (2)

Therefore, it is crucial to obtain

N∏
i=1

p (yi|x) . (3)

Unfortunately, without knowing the number of agents in the
network, it is not possible that each agent obtains (2). To
see this, recall that a consensus usually ends up with an aver-
age value or a weighted average and that it is not possible to
reach a sum using consensus-like iterations. Similarly, if we
take the logarithm in (2), we obtain the log-posterior which
becomes a sum of log-likelihoods, i.e.,

− logZc +

N∑
i=1

log p (yi|x) , (4)

and therefore it is not possible to obtain it in a simple dis-
tributed way. Admittedly, the number of agents can be ob-
tained in a distributed way, but for dynamic networks, it is
not practical, if possible. Our solution to the problem is to
use the weighted average

N∑
i=1

wi log p (yi|x) (5)

to approximate (3) with the constraint
∑N

i=1 wi = 1, wi ≥ 0.
Since Zc can be determined once (3) is obtained, we simply
ignore it for now. If we remove the logarithm in (5), we have

N∏
i=1

pwi (yi|x) . (6)

For the approximation of (3) by (6), we use two metrics for
measuring the distance between probability distributions: the
Kullback-Leibler (KL) divergence and the χ2 information
metric [10]. The former is defined as

KL (p||q) =
∫ ∞
−∞

p (x) ln

(
p (x)

q (x)

)
dx, (7)

and the latter by

χ2 (p||q) =
∫
p2 (x)

q (x)
dx− 1. (8)

Formally, we are trying to minimize

KL

(
N∏
i=1

pwi (yi|x)
∣∣∣∣∣∣ N∏

i=1

p (yi|x)

)
(9)

and

χ2

(
N∏
i=1

pwi (yi|x)
∣∣∣∣∣∣ N∏

i=1

p (yi|x)

)
(10)

with respect to wi under the constraint
∑N

i=1 wi = 1, wi ≥ 0.
The proposed criteria are widely applicable, but for gen-

eral distributions the KL (p||q) and χ2 (p||q) metrics do not
have closed-form expressions. Therefore, they are hard to an-
alyze.

In this paper, we study the case when the likelihood is
Gaussian. The observation model of agent i is

yi = x+wi, (11)

where wi ∼ N (0,Ci). We assume that Ci is known to a-
gent i. Thus, for agent i, with observation yi, the likelihood
is N (yi|x,Ci). Due to the symmetry of the Gaussian densi-
ties, we can exchange x with yi without changing the func-
tion, i.e., expressN (yi|x,Ci) asN (x|yi,Ci). Moreover, s-
ince yi is the only measurement from agent i, this agent takes
yi as the mean of the initial distribution (belief). Therefore,
we substitute yi with notation mi for the sake of readabili-
ty. We note that given M Gaussian densities N (x|mi,Ci)

for i ∈ {1, · · ·N}, the product
∏N

i=1N (x|mi,Ci) is still a
Gaussian. Let

N (x|mc,Cc) =
1

Zc

N∏
i=1

N (x|mi,Ci) . (12)

The mean mc and the covariance matrix Cc can easily be
derived [11]. They are given by

Cc =

(
N∑
i=1

C−1i

)−1
, (13)

mc = Cc

(
N∑
i=1

C−1i mi

)
. (14)

The product is not a density because it is yet to be normalized.
Likewise, the product (6) is also in Gaussian form. If

N (x|md,Cd) =
1

Zc

N∏
i=1

Nwi (x|mi,Ci) (15)

with
∑N

i=1 wi = 1, then

Cd =

(
N∑
i=1

wiC
−1
i

)−1
, (16)

md =

(
N∑
i=1

wiC
−1
i

)−1( N∑
i=1

wiC
−1
i mi

)
. (17)



3. COVARIANCE INTERSECTION

The Covariance Intersection (CI) was first proposed in [12,
13]. The objective of it was to obtain a consistent estimate of
the covariance matrix when multiple random variables were
linearly combined without knowing the correlation. Here
“consistent” means that the resulting covariance is an upper-
bound of the true covariance. CI selects the values of wi such
that the determinant or trace of Cd is minimized. In [14], it
is suggested that we can choose the values of the weighting
coefficients according to

wi =
1/tr(Ci)∑K
j=1 1/tr(Cj)

(18)

as a fast approximation algorithm. As pointed out in [15], the
criterion used in CI is equivalent to minimizing the Shannon
information of the fused function with the assumption that the
fusion functions are Gaussian.

4. KULLBACK-LEIBLER DIVERGENCE

The KL divergence is a non-symmetric measure of the dif-
ference between two probability distributions, say p (x) and
q (x). The definition is given in (7). Suppose we have two
normal distributions,N0 (m0,C0) andN1 (m1,C1). The K-
L divergence between N0 and N1 is

KL (N0||N1) =
1

2

(
tr
(
C−11 C0

)
+(m1 −m0)

T
CT

1 (m1 −m0)−K − ln
|C0|
|C1|

)
, (19)

where |C0| is the determinant of C0; tr(C0) is the trace of
C0; K is the dimension of the variable.

Suppose that the centralized Bayesian posterior is

pc (x) =
1

Zc

N∏
i=1

p (x|mi,Ci) , (20)

and the distributed consensus belief is

pd (x) =
1

Zd

N∏
i=1

pwi (x|mi,Ci) . (21)

We would like to find the weighting coefficients wi such that
the KL divergence KL (pc||pd) is minimized. Using (19), we
have

KL (Nd||Nc) =
1

2

(
tr
(
C−1c Cd

)
+(mc −md)

T
C−1c (mc −md)−K − ln

|Cd|
|Cc|

)
,

(22)

where mc, md, Cc and Cd are defined by (14), (17), (13)
and (16), respectively. We would like to solve the following
optimization problem:

minimize KL (Nd||Nc) (23)

subject to
N∑
i=1

wi = 1, (24)

wi ≥ 0, (25)

where wi are the variables. In fact, with additional mild as-
sumptions, (22) can be proved to be convex. Due to limited
space, the proof is not presented here.

5. χ2 INFORMATION METRIC

The χ2 information is another metric for measuring the d-
ifference between two continuous probability distributions.
The definition is given in (8). Suppose p (x) and q (x) are
Gaussian densities, sayN0 (m0,C0) andN1 (m1,C1). Then
p2 (x) /q (x) is still in Gaussian a form as long as the covari-
ance matrix

(
2C−10 −C−11

)−1
is positive definite. In order

to make the Gaussian form valid, i.e., the covariance matrix
be positive definite, we let p (x) be (3) and q (x) be (6) so that
2C−10 −C−11 can be positive definite. This can easily be seen
from their definitions in (16) and (13).

For N0 (mc,Cc) and N1 (md,Cd), the χ2 information
can be derived as

χ2 (N0||N1) = A2 exp

(
−1

2
A1

)
− 1,

where

A1 =(mc −md)
T

(
Cc

2
−Cd

)−1
(mc −md) ,

A2 =

√
|Cd|
|Cc|

√∣∣∣(2C−1c −C−1d

)−1∣∣∣.
The optimization problem becomes

minimize χ2 (Nd||Nc) (26)

subject to
N∑
i=1

wi = 1, (27)

wi ≥ 0, (28)

where wi are the variables. In most cases, the objective func-
tion is convex. We will discuss the convexity elsewhere.

6. APPLICATION OF THE PROPOSED METHOD

We reiterate that the objective is that the agents in a network
achieve the global posterior. However, to compute the KL di-
vergence or the χ2 information, the agents need to know (20),



which is not available (we also note that if it was available,
there would be no need for these computations). Even if (20)
is known, and the agents have the optimal values wi, the con-
sensus is not always achievable due to the constraints of the
network topology.

The agents can only exchange information with their
neighbors and not with every agent in the network. To adapt
the proposed methods to a distributed consensus problem, we
can apply the algorithm locally. We can rewrite (20) and (21)
as

pc,i (x) =
1

Zc

∏
j∈Ni

p (x|mj ,Cj)

pd,i (x) =
1

Zd

∏
j∈Ni

wjp (x|mj ,Cj) .

At each iteration, an agent collects information from its neigh-
bors and solves an optimization problem to choose the values
of wj for the fusion. We assume that the consensus process
is synchronous in that at each iteration, all the agents are in-
volved in the computation of their next beliefs.

7. NUMERICAL EXPERIMENT

Fig. 1. The topology of the network in the experiment.

In this section, we provide numerical experiments to show
the performance of the proposed methods. The topology of
the network is shown in Fig. 1. At the beginning, each agent
has a belief which is represented as a Gaussian distribution.
The mean and the covariance matrix are generated accord-
ing to a Gaussian distribution and a Wishart distribution, re-
spectively. At each iteration, an agent decides the weighting
coefficients using the proposed methods. For the optimiza-
tion problems in (23) and (26), the gradient method is used to
search for the optimal weighting coefficients. We use the KL
divergence and the χ2 information to measure the distance be-
tween the optimal local posterior and the belief of the agents
as expressed in (9) and (10), respectively.

Fig. 2. The KL divergence of the belief consensus using dif-
ferent methods.

In Fig. 2, the KL divergence at each iteration is shown
for the four different methods. ‘KL’ stands for selecting the
weighting coefficients using the KL divergence, ‘Chi’ for us-
ing the χ2 information, ‘Average’ for using equal weighting
coefficients and ‘CI’ for using the Covariance Intersection.
Figure 3 shows the χ2 information metric for the four meth-
ods. All the results are averaged over 1000 runs. We can see
that the methods based on the KL divergence and χ2 infor-
mation metric perform the same and better than the other two
methods.

8. CONCLUSION

In this paper, we proposed a new approach for reaching be-
lief consensus. Unlike traditional consensus, where networks
reach consensus at point estimates, the objective in this work
was to reach consensus at probability distributions. The ideal
probability distribution we hoped to reach was the Bayesian
posterior given all the information available over the network.
We addressed the cases where the agents do not know the size
of the network and where the beliefs are represented by Gaus-
sians. We adopted two criteria for forming beliefs, one based
on the KL divergence, and the other, on the χ2 information
metric. They were used for choosing values of the weighting
coefficients while forming the approximations. In the numer-
ical experiments, we showed that the two proposed criteria
work almost equally well and are better than the Covariance
Intersection method and the method based on averaging.



Fig. 3. χ2 information of the belief consensus using different
methods.
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