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ABSTRACT
Partial least squares (PLS) analysis has attracted increasing
attentions in image and video processing. Currently, most
applications employ batch-form PLS methods, which require
maintaining previous training data and re-training the model
when new observations are available. In this work, we pro-
pose a novel approach that is able to update the PLS model
in an online fashion. The proposed approach has the appeal-
ing property of constant computational complexity and const
space complexity. Two extensions are proposed as well. First,
we extend the method to be able to update the model when
some training samples are removed. Second, we develop a
weighted version, where different weights can be assigned to
the data blocks when updating the model. Experiments on
real image data confirmed the effectiveness of the proposed
methods.

Index Terms— Partial Least Squares Analysis, image
processing, online learning

1. INTRODUCTION

Partial Least Squares (PLS) regression is a statistical method
which models relations between sets of observed variables X
and Y by means of latent variables. It constructs new predic-
tor variables, known as components, as linear combinations of
the original predictor variables, with consideration of the ob-
served response values. According to whether Y is a vector
or a matrix, PLS is categorized into two algorithms, the PLS-
1 and PLS-2. Furthermore, by setting Y as categorical labels,
PLS can be applied as a discriminant tool for the estimation
of a low dimensional space that maximizes the separation be-
tween samples of different classes. This is the so-called Par-
tial least squares Discriminant Analysis (PLS-DA).

Recently, PLS-DA has attracted increasing attentions in
image/video processing and computer vision. It has been suc-
cessfully applied to pedestrian detection [1], face identifica-
tion [2, 3], discriminative appearance model learning [4] and
object tracking [5]. Despite its increasing popularity, all the
aforementioned applications employed batch PLS algorithms,

e.g. NIPALS [6] or SIMPLS [7], which require maintaining
all the training samples and retrain the PLS model each time
when some new training data are available. Due to their stor-
age and computational requirements, these batch methods are
unsatisfactory for real-world applications. First, they use the
entire set of training samples for each update. If an update
is made at each time step, then the number of samples which
must be retained grows linearly with the length of the time se-
ries. Second, the cost of computation grows with the number
of samples, so they will run ever slower as time progresses.

To the best of our knowledge, few approaches have been
proposed in the literature for incrementally updating a PLS
model. This may be due to the iterative nature of the classic
PLS algorithms, e.g. NIPALS and SIMPLS, which makes in-
cremental methods not straightforward. In this work, we limit
our discussion to the PLS analysis problems with a single re-
sponse variable, i.e. the PLS-1 algorithm, and propose online
PLS-1 algorithms that can update a PLS-1 model without re-
training. A weighted extension is proposed as well which en-
ables the updating method to assign weights to different train-
ing data blocks. Analysis reveals that the proposed online up-
dating algorithms possess the appealing property of constant
storage and computational complexities while being accurate
compared to their batch counterparts.

The remainder of this paper is organized as follows: we
briefly review PLS in Section 2 and introduce a closed-form
PLS-1 solution in section 2.1. The incremental and decremen-
tal PLS-1 model updating methods are presented in Section 3.
A weighted extension is addressed as well. Experiments on
real-world image data are shown in Section 4. We conclude
in Section 5.

2. THE PLS ANALYSIS

Let X ∈ <N×r be a mean-centered matrix of predictor vari-
ables, with rows corresponding to observations and columns
to variables and Y ∈ <N×m be the mean-centered response
matrix. PLS methods find new spaces where most variations
of the observed samples can be preserved, and the learned la-



tent variables from two blocks are more correlated than those
in the original spaces

X = TP> + E

Y = UQ> + F
(1)

where T ∈ <N×p and U ∈ <N×p are factor (score, compo-
nent, latent variable) matrices, P ∈ <r×p and Q ∈ <m×p

are loading matrices, and E ∈ <N×r and F ∈ <N×m are
error terms. Discriminative features T are extracted and the
dimension is reduced when p < r.

To decompose X and Y by T and U , an intermediate
weighting matrix W is usually employed. For space reason,
we refer the readers to [6] and [8] for the details of the clas-
sical NIPALS procedure for computing the PLS model. After
training, the overall regression coefficient β is learned and
stored for testing new samples. Specifically, for a test feature
vector xt, its regression response yt is evaluated by

yt = (xt − µ(X))>β + µ(Y ), (2)

where µ(X) and µ(Y ) are the sample means of X and Y
before the mean-centering respectively. For additional details
about batch PLS methods, we refer the readers to [9].

2.1. A Closed-Form PLS-1 Solution

The classical PLS algorithms, e.g. NIPALS [6] and SIM-
PLS [7], are iterative procedures. In addition, the usage of
the raw data blocks X and Y are required at each iteration.
The iterative nature and the dependency on the raw data make
it difficult to develop online algorithms basing on these meth-
ods.

Alternatively, in [10], a closed-form PLS-1 solution is
proposed. It takes two scatter matrices, namely Sxx and Sxy ,
as input to compute the PLS model instead of using the raw
data block X and Y . The two scatter matrices are defined as

Sxx =

N∑
i=1

(xi − µ(X))(xi − µ(X))> (3)

Sxy =

N∑
i=1

(xi − µ(X))(yi − µ(Y ))>, (4)

where N is the number of samples in X (and also in Y ) and
µ(X) and µ(Y ) are sample means of X and Y respectively.
Note that in (3) and (4), each xi and yi are arranged in vector
form and we have Sxx ∈ <r×r and Sxy ∈ <r×m.

Using Sxx and Sxy , the Krylov Matrix Kr ∈ <r×rm of
the pair (Sxx, Sxy) is defined as

Kr = [Sxy SxxSxy S2
xxSxy · · · Sr−1

xx Sxy]. (5)

A reduced Krylov matrix Kp ∈ <r×pm is formed by the first
p (1 ≤ p ≤ r) columns of Kr:

Kp = [Sxy SxxSxy S2
xxSxy · · · Sp−1

xx Sxy]. (6)

Further, the relationship between the weight matrix W of
the trained PLS model and the Krylov matrix of the pair
(Sxx, Sxy) is recognized. It is revealed that for univariate Y ,
i.e. when m = 1, the conventional orthonormal weighting
matrix Wp ∈ <r×p using p latent variables and the Krylov
matrixKp span the same column space. Moreover,Wp can be
computed directly by performing the QR decomposition (and
take the Q part) or the (modified) Gram-Schmidt procedure
on Kp.

Furthermore, the regression coefficient β can be com-
puted in a direct formula either using Kp as

βKp = Kp(K>p SxxKp)−1K>p Sxy (7)

or using Wp as

βWp
= Wp(W>a SxxWp)−1W>p Sxy. (8)

The two formulations βKp
and βWp

yield identical results be-
cause Kp and Wp span the same column space [10]. They
correspond to the Partial Least Squares (PLS) regression us-
ing p latent variables when p < r and reduce to the Ordinary
Least Squares (OLS) regression (assuming that Sxx is non-
singular) when p = r.

In practice, the explicitly formulated Krylov matrix Kp

in Equation (6) may be ill-conditioned due to accumulated
round off errors when computing the powers of Sxx, espe-
cially when p is large. This adversely affects the accuracy
of the resulting Wp and β. As suggested in [10], we use
the Arnoldi’s method [11] to extract the orthonormal basis
of Kp from Sxx and Sxy . The pseudo code procedure of
the Arnoldi’s method for computingWp is described in Algo-
rithm 1, where ‖ · ‖F is the Frobenius norm. The regression

Algorithm 1 Arnoldi’s method for computing orthonormal
weight matrix Wp

Require: Sxx and Sxy: the scatter matrices
p: the number of retained components

Ensure: the weight matrix Wp

1: w1 ← Sxy/‖Sxy‖F
2: for i = 2 · · · p do
3: wi ← Sxxwi−1
4: for j = 1 · · · i− 1 do
5: hj,i−1 ← w>j wi

6: wi ← wi − hj,i−1wj

7: end for
8: hi,i−1 ← ‖wi‖F
9: wi ← wi

hi,i−1

10: end for
11: Wp = [w1 w2 · · · wp]

coefficient β can thus be obtained using the resulting Wp ac-
cording to Equation (8). For detailed proof and further infor-
mation of the closed-form PLS-1 solution, we refer the read-
ers to [10].



3. ONLINE PLS-1 MODEL UPDATING METHODS

It is worth noting that the two scatter matrices Sxx and Sxy

are constant in size, i.e. independent ofN , and can be updated
incrementally with new samples. An incremental PLS model
updating algorithm can thus be derived. In deed, the output
W and β of a PLS model trained from the data blocks X and
Y can be fully determined by Sxx , Sxy and the dimension
of retained latent variables p using Algorithm 1 and Equation
(8) respectively. Besides, in order to update Sxx and Sxy , it
is necessary to store the number of samples, N(X), and the
samples means, µ(X) and µ(Y ). Therefore, we suggest to
specify a PLS model trained from the data block X and Y as

Θ(X,Y, p) = (N(X), µ(X), µ(Y ), Sxx, Sxy,W, β). (9)

The advantage of adopting this model is that all the elements
specified in the model are of constant size (independent of the
number of training samples), making the model have constant
space complexity.

3.1. Incremental Model Updating

Suppose we have trained a PLS model using training set X1

and Y1 with dimension p1. The model is then denoted as
Θ(X1, Y1, p1). When some new samples, e.g. feature vectors
X2 and their corresponding labels Y2, are available, the incre-
mental updating algorithm seeks to update the PLS model Θ
with X2 and Y2 without resorting to the original training set
X1 and Y1.

Each element in the model is updated as follows. Firstly,
the first five elements for Θ(X2, Y2, p2) is computed as
N(X2), µ(X2), µ(Y2), Sxx2, Sxy2 respectively. Incremental
updating of N(X), µ(X) and µ(Y ) is straightforward:

N(X) = N(X1) +N(X2); (10)

µ(X) =
N(X1)

N(X)
µ(X1) +

N(X2)

N(X)
µ(X2), (11)

µ(Y ) =
N(X1)

N(X)
µ(Y1) +

N(X2)

N(X)
µ(Y2). (12)

The scatter matrix Sxx can be updated using the following
equation:

Sxx = Sxx1 + Sxx2+

N(X1)N(X2)

N(X)
(µ(X1)− µ(X2))(µ(X1)− µ(X2))>.

(13)
Similarly, Sxy can also be updated as

Sxy = Sxy1 + Sxy2+

N(X1)N(X2)

N(X)
(µ(X1)− µ(X2))(µ(Y1)− µ(Y2))>.

(14)

The weight matrixW can thus be updated using the newly
updated Sxx and Sxy according to Algorithm 1. Finally, the

regression coefficient β is updated by Equation (8). We note
that although p can be different from both p1 and p2, there
is no loss of information because the number of samples, the
means and the scatter matrices have encoded all the informa-
tion needed to update a PLS-1 model.

3.2. Decremental Model Updating

It is interesting to note that in some applications, one seeks to
adjust the model after removing some trained samples. Now
we have trained a PLS model on the dataset of X1 and Y1,
we need to update the model after removing a training data
block X2 as well as its corresponding response Y2. This is
the decremental PLS (DPLS) model updating problem.

This is a straightforward extension of the incremental up-
dating procedure. We update the number of data, and their
means:

N(X) = N(X1)−N(X2) (15)

µ(X) =
N(X1)

N(X)
µ(X1)− N(X2)

N(X)
µ(X2), (16)

µ(Y ) =
N(X1)

N(X)
µ(Y1)− N(X2)

N(X)
µ(Y2). (17)

Then it is not difficult to prove that the scatter matrices Sxx,
Sxy can be updated as

Sxx = Sxx1 − Sxx2−
N(X1)N(X2)

N(X)
(µ(X1)− µ(X2))(µ(X1)− µ(X2))>.

(18)
Similarly, Sxy can also be updated as

Sxy = Sxy1 − Sxy2−
N(X1)N(X2)

N(X)
(µ(X1)− µ(X2))(µ(Y1)− µ(Y2))>.

(19)

The weight matrixW and the regression coefficient β are then
updated using Algorithm 1 and Equation (8) respectively us-
ing the newly updated Sxx and Sxy .

3.3. Weighted Model Updating

In some applications, it is interesting to give different weights
to different training samples when updating the model. For
example, in visual tracking, when the target undergoes the
appearance changes, it is likely that the recent observations
will be more indicative of its appearance than the more an-
cient ones. Therefore, it may be desirable to focus more on
recently-acquired images and down-weight the contribution
of earlier observations. On the contrary, for semi-supervised
learning, a classifier is trained using labeled data, it exploits a
set of unlabeled data to improve its accuracy. In this case, one
may need to give smaller weights to the unlabeled samples.

To tackle this problem, we propose a weighted extension
of the IPLS called weighted incremental PLS (WIPLS) model



updating method. The key idea is the concept of the “effective
number” of a sample. By default, all observations have the
same weight of 1.0. If a sample is assigned with a weight of
2.0, the result would be the same as if we had repeated this
sample twice when counting the sample number, computing
the means and the scatter matrices. On the other extreme, a
point associated with a weight of 0 would make the result as
if it had not been included in the computation at all.

For WIPLS, we assign weights to the two training blocks
with two scalar factors f1 and f2 when updating the model.
The effective number of samples N(X) and sample means
µ(X), µ(Y ) are updated with the weight factor f1 and f2 as

N(X) = f1N(X1) + f2N(X2), (20)

µ(X) =
f1N(X1)

N(X)
µ(X1) +

f2N(X2)

N(X)
µ(X2), (21)

µ(Y ) =
f1N(X1)

N(X)
µ(Y1) +

f2N(X2)

N(X)
µ(Y2). (22)

The scatter matrix Sxx can be updated using the following
equation:

Sxx = f1Sxx1 + f2Sxx2+

f1f2N(X1)N(X2)

N(X)
(µ(X1)− µ(X2))(µ(X1)− µ(X2))>.

(23)
Similarly, Sxy is updated with forgetting factor f as

Sxy = f1Sxy1 + f2Sxy2+

f1f2N(X1)N(X2)

N(X)
(µ(X1)− µ(X2))(µ(Y1)− µ(Y2))>.

(24)
Finally, the regression model W and β can be updated via
Algorithm 1 and Equation (8) respectively using the newly
updated Sxx and Sxy .

It is easy to observe that when f1 = f2 = 1.0, WIPLS is
identical to IPLS. Similarly, WIPLS reduces to DPLS when
f1 = 1.0 and f2 = −1.0. This indicates that WIPSL is the
general method for updating PLS model and both IPLS and
DPIS are special cases of WIPLS. Besides, it is worth noting
that when 0 < f1 < 1.0 and f2 = 1.0, f1 is the so-called
the “forgetting factor” because it weights less (forgets) the
previously trained samples.

4. EXPERIMENTS

In order to validate the effectiveness of the incremental and
decremental PLS model updating approaches proposed in the
previous section, we conducted an empirical study on bench-
mark data set from UCI Repository [12]. The used “Relative
Location of CT Slices on Axial Axis” data set consists of 384
features extracted from 53500 CT images from 74 different

patients. The class variable is numeric and denotes the rela-
tive location of the CT slice on the axial axis of the human
body.

We compared IPLS and DPLS with their batch counter-
parts. Without confusion, we denote PLS as the batch PLS
methods in this section. For PLS, we employed the two most
popular algorithms, NIPALS [6] and SIMPLS [7]. The fol-
lowing strategy was taken: the training sample was provided
in an online way, with 100 new samples at each following
step. At the initial step, both the PLS methods and the IPLS
approach trained a model using the initial 100 samples re-
spectively. When new samples were available, PLS methods
had to retrain the model and IPLS could update the model on-
line according to the procedure described in Section 3.1. As
there were 53500 samples in total, PLS retrained the model
534 times and IPLS updated the model also 534 times. The
number of retained latent variables P was set to 15 for all the
three methods.

The experiments were carried out by running Matlab im-
plementations on a desktop with 2.30GHz CPU and 12 GB
memory. We recoded the Frobenieus norm of difference of
the three weight matrices W and the three regression coeffi-
cients β, that were computed by the three methods at each
step. Concerning the weight matrix of SIMPLS, it is not
the same as those produced by NIPALS or IPLS. However,
it shares the same column space with the other two weight
matrices. Since W of NIPALS and IPLS are orthonormal, we
first performed a QR decomposition of the raw weight matrix
of SIMPLS and then took the orthogonal basis Q for compar-
ison. In addition to the norm of difference, the computational
time for (re)training or updating the models at each step was
recorded as well.

Figure 1 shows the computation time of the three methods
each time when they retrain or update their models respec-
tively. Not surprisingly, computational time of both NIPALS
and SIMPLS grew linearly with the number of training sam-
ples. For NIPALS, average computational time was 1.1145
seconds and the value for SIMPLS was 0.1938 seconds. In
contrast, computational time for IPLS was almost constant
and average processing time was 0.0057 seconds.

In terms of accuracy, the average norm of difference be-
tween the weight matrices W produced by IPLS and that
of NIPAL or SIMPLS (we took a maximum) during the
534 updates was 4.8131e−012, with a maximum value of
4.2417e−011. Likewise, the norm of difference between the
regression coefficients β had an average value of 6.4392e−012

and a maximum value of 1.7628e−011.
For evaluating the DPLS method, we re-ran the experi-

ments in a reverse way. We began with 53500 samples in the
initial step and removed 100 samples at each step. Conse-
quently, there were 534 times of retraining for NIPALS and
SIMPLS and 534 times of updating for DPLS. For DPLS, the
initial model was taken from the the final model produced by
IPLS in the last experiment.



Fig. 1. Computational time for NIPALS, SIMPLS and IPLS.
The horizontal axis is the experimental steps (535 in total) and
the vertical axis is the computational time in seconds.

As expected, our results showed that the computational
time of NIPLS and SIMPLS in this setting decreased linearly
with the number of training samples. Average processing time
for NIPALS was 1.1053 seconds. It was 0.1918 seconds for
SIMPLS and 0.0056 seconds for DPLS. The average norm of
difference ofW between DPLS and NIPALS or SIMPLS (the
larger one was taken) was 1.2621e−009. The maximum norm
of difference was 5.3754e−007. Average norm of difference
of β was 7.2808e−010 with a maximum value of 2.1860e−007.

We see from the above results that the proposed IPLS and
DPLS methods are both accurate and efficient. In terms of
accuracy, the differences is still negligible after thousands of
times of updating. On the other hand, substantial time gain
is achieved using IPLS or DPLS. Although we didn’t explic-
itly measure the space complexity, it is easy to see that the
proposed IPLS and DPLS methods have constant space com-
plexity.

It may be arguable whether our methods are genuinely
online PLS methods because they do not update the W and β
directly. Instead, they update some intermediate representa-
tions, i.e. the scatter matrices. Nevertheless, our methods are
of practical use because they are accurate and have constant
time complexity as demonstrated in the experiments.

5. CONCLUSIONS

The proposed online PLS-1 methods have constant time and
space complexities. The incremental and the decremental
model updating methods are special cases of a generalized
weighted extension, which can assign weights to different
training data blocks when updating the model. Experiments
demonstrate that the proposed methods are both accurate and
efficient. We thus believe that the proposed online PLS-1
methods can be of interest to researchers in image and video

processing, computer vision, and related fields.
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cent advances in partial least squares,” in Lecture Notes
in Computer Science, 2006, vol. 3940, pp. 34–51.

[10] David di Ruscio, “A weighted view on the partial least-
squares algorithm,” Automatica, vol. 36, pp. 831–850,
2000.

[11] Walter Edwin Arnoldi, “The principle of minimized
iterations in the solution of the matrix eigenvalue prob-
lem,” Quarterly of Applied Mathematics, vol. 9, no. 17,
pp. 17–29, 1951.

[12] K. Bache and M. Lichman, “UCI machine learning
repository,” 2013.


