
PIECEWISE NONLINEAR REGRESSION VIA DECISION ADAPTIVE TREES

N. Denizcan Vanli∗, Muhammed O. Sayin∗, Salih Ergüt†, and Suleyman S. Kozat∗

∗ Department of Electrical and Electronics Engineering
Bilkent University, Bilkent, Ankara 06800, Turkey

{vanli, sayin, kozat}@ee.bilkent.edu.tr

† AveaLabs, Istanbul, Turkey
salih.ergut@avea.com.tr

ABSTRACT

We investigate the problem of adaptive nonlinear regres-
sion and introduce tree based piecewise linear regression
algorithms that are highly efficient and provide significantly
improved performance with guaranteed upper bounds in an
individual sequence manner. We partition the regressor space
using hyperplanes in a nested structure according to the no-
tion of a tree. In this manner, we introduce an adaptive non-
linear regression algorithm that not only adapts the regressor
of each partition but also learns the complete tree structure
with a computational complexity only polynomial in the
number of nodes of the tree. Our algorithm is constructed
to directly minimize the final regression error without intro-
ducing any ad-hoc parameters. Moreover, our method can
be readily incorporated with any tree construction method as
demonstrated in the paper.

Index Terms— Nonlinear regression, nonlinear adaptive
filtering, adaptive, sequential, binary tree.

1. INTRODUCTION

Adaptive nonlinear regression is extensively studied in the
signal processing [1, 2] and machine learning literatures [3],
especially for the applications where linear modeling [2] is
inadequate, hence, provide unsatisfactory results due to the
linearity constraint. Although nonlinear regression methods
provide a better modeling compared to the linear regression
methods, they usually suffer from overfitting, stability and
convergence issues [4], which considerably limit their appli-
cability to signal processing problems. These issues are es-
pecially exacerbated in adaptive filtering due to the presence
of feedback, which is even hard to control for linear models
[4]. Furthermore, for big data problems, in which the regres-
sor space has remarkably large dimensions, nonlinear mod-
els are usually avoided due to unmanageable computational
complexity increase [5]. To overcome such difficulties, “tree”
based nonlinear adaptive filters or regressors are introduced
as elegant alternatives to linear models since these highly ef-
ficient methods retain the breadth of nonlinear models while
mitigating the overfitting and convergence issues [1, 2, 5].

Although the power of regression trees are widely ac-
cepted, their usage usually suffers from algorithmic decisions

such as the selection of the depth, dimensional submanifold
of the regressor space, and discrete settings such as when the
data is sparse. In particular, the success of the tree based re-
gressors heavily depends on the “accurate” partitioning of the
regressor space. Selection of a good partition, including its
depth and regions, from the hierarchy is essential to balance
the bias and variance of the regressor [5]. Therefore, in this
paper, we introduce an algorithm mitigating such algorithmic
decisions and overfitting problems by adaptively reconstruct-
ing the partitioning of the tree. Our algorithm, in basic words,
performs an adaptive piecewise linear modeling, which is a
natural nonlinear extension to linear modeling by partitioning
the regressor space into a union of disjoint regions, where
these regions are adaptively reconstructed according to the
performance of the regressor.

Specifically, we provide a deterministic solution to the
problem of nonlinear regression using decision trees. We in-
troduce an algorithm that is shown i) to be highly efficient ii)
to provide significantly improved performance over the state
of the art approaches in different applications iii) to have guar-
anteed performance bounds without any statistical assump-
tions. Our algorithm not only adapts the corresponding re-
gressors in each region, but also learns the corresponding re-
gion boundaries, as well as the “best” linear mixture of a dou-
bly exponential number of partitions to minimize the final es-
timation or regression error, with a computational complexity
only polynomial in the number of nodes of the tree. The intro-
duced approach significantly outperforms the other tree based
approaches such as [2] as demonstrated in our simulations,
since we avoid any artificial weighting of models with highly
data dependent parameters and, instead, “directly” minimize
the final error, which is the ultimate performance goal. Our
methods are generic such that they can readily incorporate
random projection (RP) or k-d trees in their framework [5],
e.g., the RP trees can be used as the starting partitioning to
adaptively learn the tree, regressors and weighting to mini-
mize the final error as data progress.

2. PROBLEM DESCRIPTION

Throughout the paper, all vectors are column vectors and de-
noted by boldface lower case letters. For a vector x, xT is the
ordinary transpose.

Fig. 1: The partitioning of a two dimensional regressor space using a com-
plete tree of depth-2 with hyperplanes for separation. The whole regressor
space is first bisected by st,λ, which is defined by the hyperplane θt,λ, where
the region on the direction of θt,λ vector corresponds to the child with “1”
label. We then continue to bisect children regions using st,0 and st,1, defined
by θt,0 and θt,1, respectively.

In this paper, we study sequential nonlinear regression,
where we observe a desired signal {dt}t≥1, dt ∈ �, and re-
gression vectors {xt}t≥1, xt ∈ �m, such that we sequen-
tially estimate dt by

d̂t = ft(xt),

and ft(·) is an adaptive nonlinear regression function. At each
time t, the regression error is given by

et = dt − d̂t.

Although there exist several different approaches to select the
corresponding nonlinear regression function, we particularly
use piecewise models such that the space of the regression
vectors, i.e., xt ∈ �m, is adaptively partitioned using hyper-
planes based on a tree structure. We also use adaptive linear
regressors in each region. However, our framework can be
generalized to any partitioning of the regression space, i.e.,
not necessarily using hyperplanes, such as using [5], or any
regression function in each region, i.e., not necessarily lin-
ear. Furthermore, both the region boundaries as well as the
regressors in each region are adaptive.

3. REGRESSOR SPACE PARTITIONING

3.1. A Specific Partition on a Tree

To clarify the framework, suppose the corresponding space of
regressor vectors is two dimensional, i.e., xt ∈ �2, and we
partition this regressor space using a depth-2 tree as in Fig.
1. A depth-2 tree is represented by three separating functions
st,λ, st,0 and st,1, which are defined using three hyperplanes
with direction vectors θt,λ, θt,0 and θt,1, respectively (See
Fig. 1). Due to the tree structure, three separating hyperplanes

Fig. 2: All different partitions of the regressor space that can be obtained
using a depth-2 tree. Any of these partition can be used to construct a piece-
wise linear model, which can be adaptively trained to minimize the regression
error. These partitions are based on the separation functions shown in Fig. 1.

generate only four regions, where each region is assigned to
a leaf on the tree given in Fig. 1 such that the partitioning is
defined in a hierarchical manner, i.e., xt is first processed by
st,λ and then by st,i, i = 0, 1. A complete tree defines a dou-
bly exponential number, O(22

d

), of subtrees each of which
can also be used to partition the space of past regressors. As
an example, a depth-2 tree defines 5 different subtrees or par-
titions as shown in Fig. 2, where each of these subtrees is
constructed using the leaves and the nodes of the original
tree. Note that a node of the tree represents a region which
is the union of regions assigned to its left and right children
nodes [6]. We also emphasize that without loss of generality,
the regions pointed by the direction vector θt are labeled as
“1” regions on the tree in Fig. 1.

While in each region, one can select various regressors
such as linear regressors, Volterra filters, or B-splines, for
clarity, we use linear regressors in this paper. Note that linear
regressors can also be extended to affine regressors by incre-
menting the length of the combination vector by one and ap-
pending a 1 at the end of the regressor vectors. In this sense,
we can obtain the estimates of the all models in Fig. 2 by us-
ing the assigned node regressors and the partitioning scheme
in Fig. 1. As an example, consider the third model in Fig.
2, i.e., P3, where this partition is the union of 4 regions each
corresponding to a leaf of the original complete tree in Fig.
1, labeled as 00, 01, 10, and 11. At each region, say the
00th region, we generate the estimate d̂t,00 = xT

t vt,00, where
vt,00 ∈ �m is the linear regressor vector assigned to region
00. Considering the hierarchical structure of the tree and hav-
ing calculated all the region estimates, the final estimate of P3

is given by

d̂t =st,λst,0d̂t,00 + st,λ(1− st,0)d̂t,01

+ (1− st,λ)st,1d̂t,10 + (1− st,λ)(1− st,1)d̂t,11,

for an arbitrary selection of the separator functions st,λ, st,0, st,1

and for any xt. We emphasize that any Pi, i = 1, . . . , 5 can
be used in a similar fashion to construct a piecewise linear
regressor.

3.2. Generic Partitioning with a Tree

In this section, the sequential regressors (as described in
Section 3.1) for all partitions in the doubly exponential tree
class are combined for some adaptive separator function st.
For βd ≈ (1.5)2

d

different models that are embedded within
a depth-d tree, we introduce the algorithm in Algorithm 1
achieving asymptotically the same cumulative squared re-
gression error as the optimal combination of the best adaptive
models. The algorithm is constructed in the proof of the
Theorem 1.

Theorem 1: Let {dt}t≥1 and {xt}t≥1 represents arbi-
trary and real-valued sequences. The algorithm d̂t given in
Algorithm 1 when applied to any data sequences with an ar-
bitrary length n ≥ 1 yields

n∑
t=1

(
dt − d̂t

)2 − min
w∈�βd

n∑
t=1

(
dt −wT d̂t

)2 ≤ O
(
ln(n)

)
,

where d̂t = [d̂
(1)
t , . . . , d̂

(βd)
t]T and d̂

(k)
t represents the esti-

mate of dt at time t for the adaptive model k = 1, . . . , βd.
This theorem implies that our algorithm given in Algo-

rithm 1, asymptotically achieves the performance of the opti-
mal linear combination of the O(22

d

) different “adaptive” re-
gressors partitioning the m-dimensional regressor space that
can be represented using a depth-d tree with a computational
complexity O(m4d) (i.e., only polynomial in the number of
nodes). We emphasize that while constructing the algorithm,
we refrain from any statistical assumptions on the underlying
data, and our algorithm works for any sequence of {dt}t≥1

with an arbitrary length of n.

3.3. Outline of the Proof of Theorem 1 and Construction

of the Algorithm

Since we use the stochastic gradient updates in our algorithm,
the upper bound proof of Theorem 1 follows similar lines to
[7] and a complete proof of Theorem 1 can be obtained in [8].
The outline of the construction of the algorithm is as follows.

We first introduce a labeling for the tree nodes following
[6]. The root node is labeled with an empty binary string λ
and assuming that a node has a label p, where p is a binary
string, we label its upper and lower children as p1 and p0,
respectively. Here we emphasize that a string can only take its
letters from the binary alphabet {0, 1}, where 0 refers to the
lower child, and 1 refers to the upper child of a node. We also
introduce another concept, i.e., the definition of the prefix of a
string. We say that a string p′ = q′1 . . . q

′
l′ is a prefix to string

p = q1 . . . ql if l′ ≤ l and q′i = qi for all i = 1, . . . , l′, and the
empty string λ is a prefix to all strings. Let P(p) represent all
prefixes to the string p, i.e., P(p) � {ν1, . . . , νl+1}, where
l � l(p) is the length of the string p, νi is the string with

l(νi) = i − 1, and ν1 = λ is the empty string, such that
the first i − 1 letters of the string p forms the string νi for
i = 1, . . . , l + 1.

Algorithm 1 Decision Adaptive Tree (DAT) Regressor

1: for t = 1 to n do

2: d̂t ⇐ 0
3: for all p ∈ Nd − Ld do

4: st,p ⇐ s+ + (1− 2s+)/(1 + ex
T
t θt,p)

5: end for

6: for all p ∈ Ld do

7: d̂t,p ⇐ vT
t,pxt

8: αt,p ⇐ 1
9: for i = 1 to l(p) do

10: αt,p ⇐ αt,ps
qi
t,νi

11: end for

12: δ̂t,p ⇐ αt,pd̂t,p
13: κt,p ⇐ γd

(
l(p)

)
wt,p

14: for all ṕ ∈ Nd − (P(p) ∪ Sd(p)) do

15: p̄ ⇐ p̃ ∈ P(p)∩P(ṕ) : l(p̃) = |P(p) ∩ P(ṕ)|−1

16: κt,p ⇐ κt,p +
γd

(
l(p)

)
γd−l(p̄)−1

(
l(ṕ)−l(p̄)−1

)
βd−l(p̄)−1

wt,ṕ

17: end for

18: d̂t ⇐ d̂t + κt,pδ̂t,p
19: end for

20: et ⇐ dt − d̂t
21: for all p ∈ Ld do

22: vt+1,p ⇐ vt,p + μtetαt,pxt

23: wt+1,p ⇐ wt,p + μtetδ̂t,p
24: end for

25: for all p ∈ Nd − Ld do

26: σt,p ⇐ 0
27: for all ṕ ∈ Sd(p0) do

28: σt,p ⇐ σt,p + κt,ṕ
δ̂t,ṕ
st,p

29: end for

30: for all ṕ ∈ Sd(p1) do

31: σt,p ⇐ σt,p − κt,ṕ
δ̂t,ṕ

1−st,p

32: end for

33: θt+1,p ⇐ θt,p − ηtetσt,pst,p(1− st,p)xt

34: end for

35: end for

Hence, we can compactly write the final estimate of the
kth model at time t as

d̂
(k)
t =

∑
p∈Mk

δ̂t,p,

where

δ̂t,p � d̂t,p

l(p)∏
i=1

sqit,νi
,

Mk is the set of all leaf nodes in the kth model, d̂t,p is the
regressor of the node p, l(p) is the length of the string p, νi ∈
P(p) is the prefix to string p with length i − 1, qi is the ith

letter of the string p, i.e., νi+1 = νiqi, and finally sqit,νi
denotes

the separator function at node νi such that

sqit,νi
�

{
st,νi

, if qi = 0

1− st,νi
, otherwise

with for some st,νi
. We emphasize that we dropped explicit

p-dependency of qi and νi to simplify notation.
Since we now have a compact form to represent the tree

and the outputs of each partition, we next introduce a method
that compactly calculates the adaptive linear combination of
O(22

d

) piecewise linear regressor outputs.
To achieve a compact representation, we assign a particu-

lar linear weight to each node. We denote the weight of node
p at time t as wt,p and then we define the weight of the kth
model as the sum of weights of its leaf nodes, i.e.,

w
(k)
t =

∑
p∈Mk

wt,p,

for all k = 1, . . . , βd. Then, we achieve the following
stochastic gradient update on the node weights

wt+1,p � wt,p + μtetδ̂t,p.

Before stating the algorithm that combines these node
weights as well as node estimates, and generates the same
final estimate d̂t = wT

t d̂t with a significantly reduced com-
putational complexity, we first let Nd denote the set of all
nodes in a depth-d tree. As an example, for d = 2 we obtain
Nd = {λ, 0, 1, 00, 01, 10, 11}. We then observe that for a
node p ∈ Nd with length l(p) ≥ 1, there exist a total of

γd
(
l(p)

)
�

l(p)∏
j=1

βd−j

different models in which the node p ∈ Nd is a leaf node of
that model, where β0 = 1 and βj+1 = β2

j + 1 for all j ≥ 1.
For l(p) = 0 case, i.e., for p = λ, one can clearly observe that
there exists only one model having λ as the leaf node, i.e., the
model having no partitions, therefore γd(0) = 1.

Hence, after some algebra, the final estimate of our algo-
rithm is given as follows

d̂t =

βd∑
k=1

w
(k)
t d̂

(k)
t

=

βd∑
k=1

⎛
⎝
⎛
⎝ ∑

p∈Mk

wt,p

⎞
⎠

⎛
⎝ ∑

p∈Mk

δ̂t,p

⎞
⎠
⎞
⎠

=
∑
p∈Nd

κ(p)δ̂t,p,

where

κ(p) �
∑
p∈Nd

γd
(
l(p)

)

×
{
wt,p +

∑
p′∈Nd−P(p)
with p/∈P(p′)

wt,p′
γd−l(p̄)−1

(
l(p′)− l(p̄)− 1

)
βd−l(p̄)−1

}
,

and p̄ denotes the longest prefix to both p and p′, i.e., the
longest string in the set of nodes P(p) ∩ P(p′).

In a similar fashion, we use a stochastic gradient descent
algorithm to update the region boundaries of the separator
functions as follows

θt+1 = θt − 1

2
ηt∇θt

e2t , (1)

where ∇θt
e2t is the derivative of e2t with respect to θt.

In order to obtain a explicit formulation, we first let
S(p) � {p′ ∈ Nd | P(p′) = p}, i.e., S(p) denotes the set
of all nodes a depth-d tree p′ ∈ Nd whose set of prefixes in-
clude the node p. As an example, for a depth-2 tree, we have
S(0) = {0, 00, 01}. We also let Ld � {p ∈ Nd | l(p) = d},
i.e., Ld denotes the set of all nodes of a depth-d tree whose
length is d, which can be viewed as the leaf nodes of the
depth-d tree. As an example, for a depth-2 tree, we have
L2 = {00, 01, 10, 11}.

Hence, after some algebra, the stochastic gradient update
in (1) for an inner node p ∈ Nd − Ld is given as follows

θt+1,p = θt,p + ηtet

⎛
⎝ 1∑

q=0

∑
p′∈S(pq)

(−1)q
δ̂t,p′

st,p′

⎞
⎠ ∂st,p

∂θt,p
,

where the last term, i.e., ∂st,p/∂θt,p can be replaced with
the corresponding derivative of the separator function with
respect to the extended direction vector. For instance, if we
choose st =

(
1 + exp(xT

t θt)
)−1

as our separator function,
we obtain ∂st,p/∂θt,p = −st(1 − st)xt, where we empha-
size that ∂st,p/∂θt,p includes st and 1 − st terms, hence in
order not to slow down the learning rate of our algorithm, we
may restrict s+ ≤ st ≤ 1 − s+ for some 0 < s+ < 0.5.
According to this restriction we define the separator function
as st = s+ +(1− 2s+)

(
1 + exp(xT

t θt)
)−1

. This concludes
the outline of the proof and the construction of the algorithm.
�

4. SIMULATIONS

In this section, we illustrate the performance of our algorithm
when the underlying partitioning of the regressor space does
not match any partition represented by the tree to demonstrate
the power of our algorithm. For this, the desired signal is
generated by the following piecewise model

dt =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
wTxt + πt, if φT

0 xt ≥ 0.5 and φT
1 xt ≥ 1

−wTxt + πt, if φT
0 xt ≥ 0.5 and φT

1 xt < 1

−wTxt + πt, if φT
0 xt < 0.5 and φT

2 xt ≥ −1

wTxt + πt, if φT
0 xt < 0.5 and φT

2 xt < −1

,

(2)
where w = [1, 1]T , φ0 = [4, −1]T , φ1 = [1, 1]T , φ2 =
[1, 2]T , xt = [x1,t, x2,t]

T , πt is a sample function from a
zero mean white Gaussian process with variance 0.1, x1,t

and x2,t are sample functions of a jointly Gaussian process
of mean [0, 0]T and variance I2. When initializing the algo-
rithms, we assign the four quadrants of the two dimensional

regressor space to the leaf nodes of the tree (i.e., we parti-
tion the regressor space using x1 = 0 and x2 = 0 lines).
We plot the normalized time accumulated regression error for
the Decision Adaptive Tree (DAT) regressor of Algorithm 1,
the context-tree weighting (CTW) algorithm [2] (both having
depths d = 2), the second order Volterra filter (VF) [4], the
third order Fourier nonlinear filter (FNF) of [9], the cubic B-
Spline Adaptive Filter (B-SAF) of [10] having 21 knots, and
the Gaussian-kernel regressor(GKR) that is directly tuned to
the underlying sequence.

We use the stochastic gradient descent algorithm in the
regressor of each node for all algorithms, and the step sizes
μt are set to 0.005 for the DAT (where ηt = s+(1 − s+)μt)
and the CTW, 0.1 for the FNF, 0.025 for the B-SAF, 0.05
for the VF, and 1 for the GKR. The GKR is constructed us-
ing 4 node regressors, say d̂t,1, . . . , d̂t,4, and a fixed Gaussian
mixture weighting (that is selected according to the underly-
ing sequence), giving d̂t =

∑4
i=1 f (xt;μi,Σi) d̂t,i, where

f (xt;μi,Σi) is the multivariate Gaussian probability den-
sity function with mean μi and variance Σi for i = 1, . . . , 4,
xt is the original regressor vector, i.e., xt = [x1,t, x2,t]

T and
d̂t,i = vT

t,ixt. In order to match the underlying partition that
generates the sequence in (2), the mass points of the GKR are
set to μ1 = [1.4565, 1.0203]T , μ2 = [0.6203, −0.4565]T ,
μ3 = [−0.5013, 0.5903]T , and μ4 = [−1.0903, −1.0013]T

with covariance matrices Σi = 1.2× I2 for i = 1, . . . , 4.
Fig. 3 shows the normalized time accumulated regression

error of the proposed algorithms for a sample function of the
process in (2). We observe that the DAT algorithm signifi-
cantly outperforms its competitors by learning the true parti-
tioning of the regressor space, whereas the other algorithms
yield unsatisfactory results. We emphasize that even without
any prior information and assumption on the underlying se-
quence, the DAT algorithm adapts its region boundaries and
can capture the salient characteristics of the underlying data
perfectly.

5. CONCLUDING REMARKS

We study nonlinear regression of deterministic signals using
trees, where the regressor space is partitioned using a nested
tree structure and different regressors are assigned to each re-
gion. In this framework, we introduce a tree based algorithm
that both adapts its regressors in each region as well as its tree
structure to best match to the underlying data while asymp-
totically achieving the performance of the best linear combi-
nation of a doubly exponential number of adaptive nonlinear
regressors represented on a tree with a computational com-
plexity only polynomial in the number of nodes of the tree.
Furthermore, the introduced algorithm does not require a pri-
ori information on the data such as upper bounds or the length
of the signal. Since our algorithm directly minimize the final
regression error and avoid using any artificial weighting co-
efficients, they readily outperform different tree based regres-
sors in our examples.

0 1 2 3 4 5

x 104

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Data Length (n)

C
um

ul
at

iv
e

D
et

er
m

in
is

tic
 E

rr
or

Deterministic Error Performance of the Proposed Algorithms

FNFDAT

GKR

CTW

B−SAF VF

Fig. 3: Regression error performances for the second order piecewise lin-
ear model in (2). The time accumulated sequential regression error for the
ANR and CTW algorithms (both using depth-2 tree structure), and the OGK
regressor tuned to the underlying sequence.

REFERENCES

[1] O. J. J. Michel, A. O. Hero, and A.-E. Badel, “Tree-structured
nonlinear signal modeling and prediction,” IEEE Transactions
on Signal Processing, vol. 47, no. 11, pp. 3027–3041, 1999.

[2] S. S. Kozat, A. C. Singer, and G. C. Zeitler, “Universal piece-
wise linear prediction via context trees,” IEEE Transactions
on Signal Processing, vol. 55, no. 7, pp. 3730–3745, 2007.

[3] D. P. Helmbold and R. E. Schapire, “Predicting nearly as well
as the best pruning of a decision tree,” Machine Learning,
vol. 27, no. 1, pp. 51–68, 1997.

[4] A. H. Sayed, Fundamentals of Adaptive Filtering. NJ: John
Wiley & Sons, 2003.

[5] S. Dasgupta and Y. Freund, “Random projection trees for vec-
tor quantization,” IEEE Transactions on Information Theory,
vol. 55, no. 7, pp. 3229–3242, 2009.

[6] F. M. J. Willems, Y. M. Shtarkov, and T. J. Tjalkens, “The
context-tree weighting method: basic properties,” IEEE Trans-
actions on Information Theory, vol. 41, no. 3, pp. 653–664,
1995.

[7] E. Hazan, A. Agarwal, and S. Kale, “Logarithmic regret al-
gorithms for online convex optimization,” Machine Learning,
vol. 69, no. 2-3, pp. 169–192, 2007.

[8] N. D. Vanli and S. S. Kozat, “A comprehensive approach to
universal nonlinear regression based on trees,” CoRR, vol.
abs/1311.6392, 2013.

[9] A. Carini and G. L. Sicuranza, “Fourier nonlinear filters,” Sig-
nal Processing, vol. 94, no. 0, pp. 183 – 194, 2014.

[10] M. Scarpiniti, D. Comminiello, R. Parisi, and A. Uncini,
“Nonlinear spline adaptive filtering,” Signal Processing,
vol. 93, no. 4, pp. 772 – 783, 2013.

