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ABSTRACT
In this contribution, we propose an algorithm to analyze

early and late reverberation in monaural recordings in an off-
line processing framework with emphasis on live recordings.
This algorithm is evaluated against known state-of-the-art so-
lutions. Our baseline method uses cepstral mean along signal
blocks to acquire an estimation of the reverberation’s impulse
response which is analyzed with respect to its decay charac-
teristics. Further improvements are a cepstral lifter to increase
the method’s performance by removing nonrelevant cepstral
coefficients and a polynomial of second order to map the re-
sults onto final estimates. Results indicate larger deviations
in the estimated decay times of late reverberations, while es-
timates for the early decay times are within the just noticable
difference (JND) and deviate only slightly from the true val-
ues. State-of-the-art algorithms show small correlation with
the true reverberation times.

Index Terms— Blind estimation, reverberation time, cep-
stral analysis

1. INTRODUCTION

The blind estimation of reverberation time (RT) is a current
research issue since it provides valuable information in appli-
cations like mobile telephony and hearing aids. Often, those
technologies apply dereverberation algorithms to enhance the
speech quality and rely therefore on information about the RT
at the speaker’s position. Three state-of-the-art algorithms for
speech are compared by Gaubitch et al. [1] and incorporate
methods using spectral decay rate distributions [2], modula-
tion energy ratios [3] and maximum likelihood estimations of
the prevailing decay constant of the room impulse response
during sound decays [4, 5]. All those methods are optimized
for speech and imply signal properties of speech like com-
monly occurring pauses and/or modulation spectra with most
of the energy in low bands.

With a focus on audio restoration, we try to find a ro-
bust method to estimate the RT independently from the type
and characteristics of the audio signal. Therefore, also mu-
sic recordings have to be considered as possible audio sig-
nal. Some publications address this problem. Hansen [6]
uses the auto correlation function to evaluate energy decays
within the signal by deploying an ordinary backwards inte-

gration proposed by Schroeder [7] but the method lacks ac-
curacy [8]. Kendrick et al. [9] compute an envelope spectrum
of the bandpass-filtered signal in the 1 kHz-octave to train an
artificial neural network with respect to the true RT. Baskind
and Warusfel [10] applied a method utilizing a complex cep-
stral mean to reconstruct the early reflections within the room
impulse response (RIR) governing the signal. The late decay
time (RT) has been estimated by analyzing sound decays in
the music signal.

Except for parts of [10], every method relies in some way
on the evaluation of sound decays to estimate the amount of
late reverberation. This constraint does not hold for complex
music signals since proper sound decays, i.e. signal pauses,
are not necessarily present in every recording. For this rea-
son, an approach is proposed which does not require specific
properties of the audio signal.

The remainder of the paper is organized as follows. To in-
troduce the context of the algorithm, a working hypothesis is
presented in section 2. In section 3, the algorithm is described
and evaluated in section 4. The findings are finally concluded
in section 5.

2. WORKING HYPOTHESIS

Since the application for the blind estimation proposed in this
work is audio restoration, the need of a real-time implemen-
tation does not exist and the method can perform off-line.
Furthermore, the audio material is expected to be monau-
ral. Therefore, a benefit of multichannel recordings via mi-
crophone arrays or binaural recordings does not exist. The
impulse responses (IR) which are associated with the rever-
beration are treated as stationary over the period of one audio
track. This also corresponds to the practice of applying arti-
ficial reverberation in music production. In those situations
the amount of reverberation time or the direct-to-reverberant
ratio (DRR) is held nearly constant over one track. Further-
more, the location of the sources in the audio material are sup-
posed to be stationary as well, so musicians or speakers do not
move significantly over the progress of the audio signal. At
last, the audio material which is considered will be degraded
by stationary additive noise caused e.g. by the analog stor-
age media or the recording devices such as microphones. As
a constraint, the range of the considered reverberation times
spans from T30,min = 0.3 s up to T30,max = 3.0 s since this



covers common values in the field of musical recordings. To
introduce a measure for the perceptive quality of the estima-
tion the just noticable difference (JND) as stated in [11] is
considered. Thus, differences in RTs of less than 100 ms can
be neglected.

3. METHOD

The reverberated signal x(n) is divided into L frames with
block length N , block index ` and frame shift N∆, yielding

x(n, `) = w(n+ `N∆)x(n), where ` = 1, 2, . . . , L (1)

denotes the block index and w(n) being a window function
(Hamming window) in time domain. The block length N
is chosen with N/fs ≈̂ 6 s to capture the RIR’s full length
where fs is the sampling frequency. This follows from the
chosen maximum reverberation time to be considered of
T30 = 3.0 s. Due to performance reasons, N corresponds
to the next power of two so the actual block length might be
greater than 6 s. The frame shift N∆ was set to N∆/fs ≈ 2 s
to ensure enough signal innovation within each subsequent
cepstral frame. Every signal block ` is transformed into the
cepstral domain by the discrete real cepstrum transformation

c(κ, `) =
1

N

N−1∑
k=0

log (|X(k, `)|) ej2πκk/N (2)

with κ = 0, 1, . . . , N − 1 and

X(k, `) =

N−1∑
n=0

x(n, `)e−j2πnk/N (3)

with k = 0, 1, . . . , N − 1 and κ being the cepstral variable
([κ/fs] = s). The resulting short time cepstrum c(κ, `) can
be averaged along the blocks ` to obtain c̄L(κ), an estimate of
the stationary convolutive part’s cepstrum prevailing the input
signal x(n).

Subsequently, a lifter η(κ) is applied to remove cepstral
coefficients which do not correspond to the actual RIR’s cep-
strum (c.f. section 3.1). It is defined by

η(κ) =

{
1 if κ1 < |κ| < κ2

0 else
(4)

with κ1 and κ2 being the edge quefrencies of the rectangular
lifter. The liftered cepstral mean c̄L,lift(κ) is transformed back
into time domain using a minimum-phase reconstruction-
window ξmin(κ). A minimum phase has been chosen al-
though, strictly, this does not hold for a real RIR. Neverthe-
less, experiments with real and artificial RIRs have shown
that the early and late decay times are less distorted by evalu-
ating the minimum phase part than using the zero phase part.
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Fig. 1. Algorithm to estimate the stationary impulse response
within the audio signal.

The latter would result when both sides of the cepstrum are
transformed into time domain. ξmin(κ) is defined as

ξmin(κ) =


1 if κ = 0

2 if κ > 0

0 if κ < 0

. (5)

Applying the two lifters ξmin(κ) and η(κ) in the cepstral
domain, the mean cepstrum becomes

c̄L,lift,min(κ) = c̄L(κ) · ξmin(κ) · η(κ) (6)

and, thus, the minimum phase part of the impulse response
hc̄L(n) is reconstructed by applying the inverse discrete, real
cepstrum.

The described steps to obtain the impulse response cor-
responding to the reverberation are illustrated in fig. 1 where
the Cep(•) operator symbolizes the transformation from equa-
tion (2) and Cep-1(•) the inverse transformation, respectively.
On the right pane the lifter windows are depicted which were
used in the corresponding step on the left pane.

The IR hc̄L(n) is analyzed by using the Schroeder back-
wards integration [7] for an estimate of the early decay time
(ẼDT ) describing the decay within the first 10 dB of the en-
ergy decay curve. For a better comparability with the RT,
the EDT is extrapolated to a decay of 60 dB. Furthermore,
the late reverberation time (T̃30) is estimated by applying the
method according to Xiang [12], utilizing a non-linear regres-
sion approach to handle the occuring noise in the time domain
introduced by the averaging process in cepstral domain.

In order to compensate for systematical bias in the results,
the estimates are mapped using a polynomial of second order
whose coefficients are computed using a robust regression ap-
proach (c.f. section 3.2).



3.1. Liftering in cepstral domain

So called liftering in cepstral domain is known from speech
processing in order to, for instance, separate the pitch excita-
tion signal from the filter response of the vocal tract [13].

In our approach, the cepstral mean along the frames of
short time cepstra show strong components around the origin,
as depicted in fig. 2. The shown impulse response computed
by Dahl’s and Jot’s method [14] has been used to reverber-
ate an anechoic orchestral recording of 30 s duration and the
cepstral mean c̄L(κ) (c.f. fig. 1) in the lower part of fig. 2
is computed by an arithmetical average of each cepstral bin
along the short-time cepstral frames. The strong components
at the origin do not correspond to actual cepstral coefficients
of the underlying room impulse response which is also plot-
ted in fig. 2 but seem to originate from the audio signal’s cep-
stra at those lower quefrencies. The actual cepstrum of the
used Jot impulse response has no decisive peaks below ap-
proximately κ = 15 ms. For this reason, the introduction of
a lifter is proposed which cancels those coefficients near the
origin that do not correspond to the underlying room impulse
response. In order to find an appropriate edge quefrency one
has to be aware of the effect of canceling the cepstral coeffi-
cients near the origin. Schafer and Oppenheim [15, 16] could
show that the cepstrum of a simple IR consisting of a few
echoes is zero up to the quefrency which corresponds to the
shortest echo delay time. A room impulse response possesses
a large number of reflections that can be interpreted as echoes.
To find an edge quefrency an assumption of the pre-delay (or
initial time delay gap) within a typical RIR would be neces-
sary. Since this is a difficult task, an edge quefrency has been
found empirically with κ1 = 15 ms. This would cancel the
lower quefrencies in the cepstral mean c̄L(κ) in fig. 2 which
do not correspond to the RIR’s cepstrum and yet leaves the
higher coefficients unaltered. Additionally to κ1, an upper
edge quefrency κ2 has been found beneficial to avoid unnec-
essary convolutive noise in the reconstructed IR hc̄L(n) and
has been chosen empirically as κ2 = 600 ms. κ1 and κ2 were
found using all available IRs as stated in section 4.

3.2. Mapping of the estimates

In order to map the raw estimates x of the early and late decay
times onto the final estimates ymap, a polynomial of the form

ymap(x) =

M∑
m=0

βmx
m, with M = 2 (7)

is trained. The order is chosen since additional coefficients do
not lead to a better coefficient of determination (R2). The co-
efficients βm were computed using a robust regression by ap-
plying an iteratively reweighted least squares algorithm with
a bisquare weighting function [17]. This leads to a more ro-
bust regression against outliers in the raw estimations. The
coefficients and the corresponding R2 are shown in table 1.
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Fig. 2. a) Time signal of an impulse response generated using
Jot’s reverberator [14]. b) Cepstral mean computed from an
anechoic signal reverberated with the impulse response from
a) and the actual cepstrum of the impulse response from a).

Table 1. Coefficients of the polynomial in (7) used to map the
estimates onto the final results.

Estimate β0 β1 β2 R2

T̃30 −0.1090 0.8843 0.1773 0.82
ẼDT −0.1732 1.0302 0.0881 0.92

For the training, 70% of all available IRs have been used
to reverberate the training set. The remaining 30% have been
used to reverberate the test set which is subsequently mapped
to the final estimates. The anechoic sound files consisted of
18 files with durations between two and five minutes and have
been used for both the training and test set.

4. EXPERIMENTS AND RESULTS

For evaluation, we convolved anechoic signals with impulse
responses that span the T30 range from 0.3 s up to 3.0 s. A
sampling rate of fs = 16 kHz has been used throughout all
experiments. In this work, the test signals have not been de-
graded by additive noise and the DRR of the IRs has been ad-
justed to be exactly 0 dB. The latter follows from the fact that
the cepstral influence of the IR is very low for DRR > 0 dB
resulting in a cepstral mean which does not correspond to the
room’s IR. The chosen value of DRR = 0 dB therefore resem-
bles a “worst-case” with respect to a robust estimation.

Since the method focuses mainly on reverberated music
signals, in a first experiment a database of anechoic mu-
sic recordings which includes orchestral music provided by
Jukka Pätynen et al. [18] and [19] and anechoic choral record-
ings provided by Ron Freiheit et al. [20] was formed. Those
recordings had durations between 2 min and 5 min and were
reverberated with a set of IRs from public sources [21–25]
and [14]. All IRs were selected on their true RT using



Schroeder’s method [7] prior to estimation to suit the T30

value range as stated above. As mentioned in section 3.2,
70% of the total 111 IRs were used as a training set and the
remaining 30%, i.e. 33 IRs, formed the test set. The 18
anechoic audio signals were the same for both sets and for all
algorithms.

As reference, two algorithms from literature have been
evaluated with the same audio material. First, the method by
Jeub [5] which was inspired by Löllmann et al. [4] was cho-
sen and is called in the following “ML”. The approach focuses
on speech signals and incorporates a maximum likelihood es-
timation (ML) of decay constants in detected signal decays.
Since the method works on signal frame basis, a final esti-
mate for the total signal is obtained by averaging the frame-
wise results disregarding values at the beginning and end of
the complete signal. Secondly, the approach of Wen et al. [2]
was applied on the test signals and is called “SDD” in the fol-
lowing. The latter exploits the spectral decay distribution in
time-frequency domain and maps the negative-side variance
of the distribution to a final estimate. The parameters used for
the proposed method are stated in table 2, both the ML and
the SDD algorithm were used with default parameters.

The following measures have been utilized to evaluate
the algorithm’s performances. The mean interquartile range
(MIQR) describes the arithmetical average distribution width
of the estimates over all J true T30 groups (i.e. T30 = 0.3 s up
to T30 = 3.0 s). It is defined by

MIQR =
1

J

J∑
j=1

(Qj,0.75 −Qj,0.25) (8)

with Qj,0.75 being the 75% quantile of the jth RT group and
Qj,0.25 the 25% quantile, respectively. The average relative
deviation of the medians over the J groups are measured by
the mean relative deviation (MRD) which is calculated by

MRD =


J∏
j=1

1 +

∣∣∣med
{
T̃j,30

}
− Tj,30

∣∣∣
Tj,30


1/J

− 1


· 100% (9)

using the geometric mean since we are dealing with an av-
erage of ratios. The overall correlation (Corr) between esti-
mation medians and ground truth is measured by an ordinary
Pearson correlation coefficient %

% =
Cov

(
med

{
T̃30

}
, T30

)
σ
(

med
{
T̃30

})
· σ (T30)

. (10)

The results for the estimates using music recordings are
stated in table 3. Both the reference algorithm ML and SDD
show large MIQR of 0.698 s for ML and 1.087 s for SDD re-
spectively which indicate little consistency of the methods

for the chosen audio material. Also, the MRD of the refer-
ence algorithms show a large average deviation of the medi-
ans of about 53% for ML and 46% for SDD indicating a rather
large bias. The correlation between true values and medians
of the estimates confirm the average deviation of the medi-
ans for ML and SDD. Since both reference algorithms were
proposed for speech signals and therefore signals with inher-
ent decay parts, the results for music signals and the large
set of evaluated RTs is expected as it was assumed in sec-
tion 1. The proposed method performs in the chosen setup
with an MIQR of 0.373 s and MRD of 22%, leading to a cor-
relation of % = 0.897 for the estimation of the late decay time
T̃30. The average IQR for the ẼDT estimates is even lower
with 0.127 s and the medians deviate in average with about
11% leading to a correlation of % = 0.981. The ẼDT es-
timates remain therefore almost within the considered JND
limits. These findings lead to the assumption that the stronger
cepstral coefficients of the early reflections result in more con-
sistent estimates of the underlying impulse response.

In a second experiment, the same setup was used for
speech signals of German and English language which were
recorded in a rather dry recording booth. Those signals had
durations between 2 min and 5 min as well and were con-
volved with the same training and test set of IRs. The results
are shown in table 3. With this chosen test signals containing
speech, the reference algorithms perform better in compari-
son to music signals. The MIQR dropped to each 0.108 s for
ML and 0.231 s for SDD but the medians deviate in average
with about 49% for ML and 54% for SDD. The correlations
show poor values, respectively. This can be explained by
a strong dependency on the signal’s properties and the large
range of chosen RTs for the evaluation. The proposed method
performs for the T̃30 estimates with an MIQR of 0.37 s and
MRD of about 29% leading to a correlation of % = 0.891.
The ẼDT estimates show an MIQR of 95 ms and and MRD
of about 9% leading to a correlation of % = 0.981. Again, the
ẼDT estimates lie within the considered JND limits.

5. CONCLUSIONS

The proposed method exploiting an enhanced cepstral mean
performs well for estimating the early decay time for music
and speech signals in an off-line processing framework. This
can be explained by the prominent cepstral coefficients of the
early reflections. The reference algorithms show poorer re-
sults for speech than expected and fail to estimate RTs in mu-
sic accurately. This leads to the conclusion that an evaluation
with a large set of test signals is essential to gain meaning-
ful results. Further investigations are planned to evaluate the
proposed method’s robustness to test signals degraded by ad-
ditive noise and the capability of estimating frequency depen-
dent results. In addition, the effects of a DDR > 0 dB and
the assumption of stationary IRs must be further evaluated in
detail.



Table 2. Parameters used for the proposed algorithm.

N N∆ w(n) ξ(κ) κ1 κ2

≥ 6 s ≈ 2 s Hamm. min. phase 15 ms 600 ms

Table 3. Performance of the estimates computed by the ana-
lyzed algorithms using music and speech signals. Best per-
forming results are highlighted in bold. The ref. algorithms
do not provide ẼDT estimates.

Signal Algorithm Type MIQR MRD Corr.
in s in % %

Music

ML T̃30 0.698 53.2 0.592
SDD T̃30 1.087 45.9 0.421

Proposed T̃30 0.373 22.3 0.897
ẼDT 0.127 11.2 0.981

Speech

ML T̃30 0.108 49.3 0.650
SDD T̃30 0.231 53.7 0.489

Proposed T̃30 0.370 29.4 0.891
ẼDT 0.095 09.1 0.981
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